A Bilevel Fixed Charge Location Model for Facilities under Imminent Attack

Deniz Aksen
Koç University
College of Administrative Sciences and Economics
Sarıyer, İSTANBUL

Necati Aras and Nuray Piyade
Boğaziçi University
Dept. of Industrial Engineering
Bebek, İSTANBUL

AGENDA

- PROBLEM DEFINITION and DESCRIPTION
- LITERATURE REVIEW
- BFCLP MODEL
- SOLUTION METHODS
- COMPUTATIONAL RESULTS
- CONCLUSION
PROBLEM DEFINITION

Interdiction of a Geographically Distributed Service or Supply Network System

- **Definition:**
 An intentional strike against a network system which is anticipated in the form of a man-made threat
 Examples: sabotage, riot, enemy attack, terrorist action

- **Target:**
 Critical facilities - the ones which, if lost, would pose a significant threat to needed supplies, services, and communications or a significant loss of service coverage or significant loss of efficiency in service delivery.
 Examples:
 - Needed supplies: food, energy, medicines, water
 - Needed services: police, fire, emergency medical services, transportation (airports, ports, terminals), purification and sanitation
 - Needed communications: antenna towers, base stations, switch offices, radars

By Deniz Aksen on July 12th 2010 in Lisbon

r-Interdiction Median Problem (RIM)

r-Interdiction Coverage Problem (RIC)
PROBLEM DEFINITION: RIM

r - Interdiction Median Problem

Definition:
- Among \(p \) facilities, find a subset of \(r \) facilities, which—when removed—yields the highest level of demand-weighted distance (cost) in total.
- Anti-thesis of the world-famous \(p \)-median problem.

Purpose:
- Identification of \(r \) most critical facilities in a network consisting of \(p \) service/supply and \(n \) demand nodes.
- Prediction of the most disruptive action of an Attacker.

PROBLEM DEFINITION: RIMF

r - Interdiction Median Problem with Protection

Definition:
Of the \(p \) different facilities, find the subset of \(q \), which—when protected—provides the best outcome against a subsequent optimal (\textit{worst-case}) \(r \)-interdiction strike leading to the definitive loss of \(r \) non-protected facilities.

\((q + r \leq p) \)

PUBLIC FACILITIES service delivery NOT on customer site!

Objective:
Minimize the post-attack cost of accessibility from demand nodes to the \textbf{CLOSEST AVAILABLE} supply/service nodes.
PROBLEM DEFINITION: RIMF

The Bilevel Programming (Stackelberg Game) Formulation of the \(r \)-Interdiction Median Problem with Protection

DEFENDER

Obj.: Minimize \(H(X) \) = The total demand-weighted distance between demand nodes and their \textit{CLOSEST AVAILABLE} facilities surviving the attack by protecting \(q \) of \(p \) facilities.

Apply the protection plan

RIM

Obj. \textbf{Maximize} \(H(X) \) given the protection plan of the Defender

Report

the interdiction (loss) of \(r \) unprotected facilities

ATTACKER

AGENDA

- PROBLEM DEFINITION and DESCRIPTION
- LITERATURE REVIEW
- BFCLP MODEL
- SOLUTION METHODS
- COMPUTATIONAL RESULTS
- CONCLUSION
LITERATURE REVIEW

Review of critical infrastructure, reliability and disruption models for facility location and supply chain networks

Snyder LV, Daskin MS. Reliability models for facility location: the expected failure cost case. (Trans Sci 2005;39)

By Deniz Aksen on July 12th 2010 in Lisbon

SOURCES OF INSPIRATION

- RIM + RIC + an annotated bibliography

- IMF : Single level problem solved with Cplex 7.0

- Maximal Covering Problem with Precedence Constraints (MCPC): an alternative way of reformulating IMF

By Deniz Aksen on July 12th 2010 in Lisbon
SOURCES OF INSPIRATION

- **RIMF: Bilevel problem solved with implicit enumeration and Cplex 9.0**

 Requires at most $(r^{q+1}-1)/(r-1)$ RIM problems to be solved conditional on the protection plan of the Defender.

SOURCES OF INSPIRATION

BCRIMF-CE

- The budget constrained r-interdiction median problem with capacity expansion

- Benefits from the binary enumeration tree (BET) method proposed in Scaparra and Church (Comp. & OR, 2008)

- Adds a budget constraint on the protection resources of the defender instead of a fixed number of facilities that can be protected.

- Incorporates capacity expansion decisions in accordance with customer-facility reassignments in the wake of interdiction.

- Assumes that facility locations were already predetermined.

By Deniz Aksen on July 12th 2010 in Lisbon
SOURCES OF INSPIRATION

BPPCF
- A Bilevel p-Median Model for the Planning and Protection of Critical Facilities

Aksen D, Aras N, Piyade N (2009, under review)

- Incorporates also the facility location decisions into the problem setting of BCRIMF-CE
- This makes BPPCF a triplet problem in a bilevel framework:
 - location + protection by the Defender, interdiction by the Attacker.

- Still based on the p-median idea
- The protection budget is not a cost component in the Defender’s objective, but rather an a priori known limited resource.

AGENDA

- PROBLEM DEFINITION and DESCRIPTION
- LITERATURE REVIEW
- BFCLP MODEL
- SOLUTION METHODS
- COMPUTATIONAL RESULTS
- CONCLUSION
PROBLEM DESCRIPTION: RIM

Weighted Distance: 2950.41

Figure 2a. Optimal solution to the p-median problem ($p = 5$).

Weighted Distance: 6124.53

Figure 2b. Optimal interdiction of the p-median solution given in Figure 2a ($r = 2$).

By Deniz Aksen on July 12th 2010 in Lisbon

PROBLEM DESCRIPTION: RIM

Weighted Distance: 3055.10

Figure 3a. A close-to-optimal solution to the p-median problem ($p = 5$).

Weighted Distance: 4613.17

Figure 3b. Optimal interdiction of the p-median solution given in Figure 3a ($r = 2$).

By Deniz Aksen on July 12th 2010 in Lisbon
NEW MODEL: BFCLP

A Leader-Follower Game (static Stackelberg Game) for the Planning and Protection of Critical Facilities

- In the upper level (Leader’s problem), the Defender decides:
 - Given a finite and discrete set of candidate locations,
 - how many facilities should be opened where?
 - what should be their initial capacity installations?
 - and what should be their initial status (protected or unprotected)?
 - Each facility location has different opening costs for the unprotected and protected modes.
NEW MODEL: BFCLP

ASSUMPTIONS

- Given the decisions of the Defender in the upper level problem, the Attacker in the lower level problem (Follower’s problem) chooses:
 - **At most** \(r \) facilities to interdict (**r is given**).

- An interdicted facility is destroyed beyond repair.

- Partial interdiction of a facility is not possible.

- The Attacker has perfect information about the protection status of every opened facility.

- A facility opened in the protected mode (**more expensive**) is immune to any attack.

- **EACH CUSTOMER DESIRES TO GO TO THE CLOSEST OPERATIONAL FACILITY.**

By Deniz Aksen on July 12th 2010 in Lisbon

NEW MODEL: BFCLP

THE DEFENDER’s COST COMPONENTS BEFORE INTERDICTION

- **BI-1.** The total fixed cost of opening facilities either in the protected or unprotected mode.

- **BI-2.** The sum of capacity acquisition costs at the opened facilities, which may vary from one facility to another depending on the unit capacity acquisition cost and the total customer demand met.

- **BI-3.** The sum of demand-weighted traveling costs between customers and the respective nearest opened facilities before interdiction.

By Deniz Aksen on July 12th 2010 in Lisbon
NEW MODEL: BFCLP

THE DEFENDER’s COST COMPONENTS AFTER INTERDICTION

- **AI-1.** The sum of capacity expansion costs incurred by the non-interdicted facilities due to the re-allocation of the customer demand originally satisfied by the interdicted facilities.

- **AI-2.** The sum of extra demand-weighted traveling costs arising due to the re-allocation of the customers from the facilities severed by the attacker.

THE ATTACKER’s COST COMPONENTS

- **AI-1**

- **AI-3.** The sum of post-attack demand-weighted traveling costs between all customers and their respective nearest facilities surviving the attack.

BFCLP :: Notation

- **Sets:**

 \[I = \text{Set of demand nodes (customers), } I = \{1, \ldots, n\} \]

 \[J = \text{Set of candidate facility sites, } J = \{1, \ldots, m\} \]

- **Parameters**

 \[d_{ij} = \text{traveling cost between facility site } j \text{ and demand node } i. \]

 \[q_i = \text{demand of customer } i. \]

 \[f_j = \text{fixed cost of opening a facility at site } j \text{ in the unprotected mode.} \]

 \[f_j + b_j = \text{fixed cost of opening a facility at site } j \text{ in the protected mode.} \]

 \[c_{1j} = \text{unit capacity acquisition cost for the facility at site } j \]

 \[c_{2j} = \text{unit capacity expansion cost for the facility at site } j \]

 \[r = \text{the max. number of facilities that can be interdicted by the attacker.} \]
BFCLP :: Notation

- **Binary Decision Variables:**

\[
X_j = \begin{cases}
1 & \text{if site } j \text{ is chosen to open a facility}, \\
0 & \text{otherwise}.
\end{cases}
\]

\[
Y_j = \begin{cases}
1 & \text{if the facility at site } j \text{ is protected}, \\
0 & \text{otherwise}.
\end{cases}
\]

\[
S_j = \begin{cases}
1 & \text{if the facility at site } j \text{ is lost due to an interdiction}, \\
0 & \text{otherwise}.
\end{cases}
\]

\[
U_{ij} = \begin{cases}
1 & \text{if customer } i \text{ is assigned to the facility at site } j \text{ before the attack}, \\
0 & \text{otherwise}.
\end{cases}
\]

\[
V_{ij} = \begin{cases}
1 & \text{if customer } i \text{ is assigned to the facility at site } j \text{ after the attack}, \\
0 & \text{otherwise}.
\end{cases}
\]

BFCLP Model

\[
F_{ij} = \{ k \in J \mid d_{ik} \leq d_{ij} \}
\]

\[
\begin{align*}
\min \ Z_{\text{def}} = & \sum_{j \in J} f_j X_j + \sum_{j \in J} b_j Y_j + \sum_{i \in I} \sum_{j \in J} (c_{ij} + d_{ij}) q_{ij} U_{ij} + \sum_{i \in I} \sum_{j \in J} (c_{2ij} + d_{ij}) q_{ij} (1 - U_{ij}) Y_{ij} \\
\text{Subject to} & \sum_{j \in J} U_{ij} = 1 \quad \forall i \in I \\
& \sum_{i \in I} U_{ij} \leq n X_j \quad \forall j \in J \\
& \sum_{k \in \mathcal{N}_j} U_{ik} \geq X_j \quad \forall i \in I, \forall j \in J \\
& Y_j \leq X_j \quad \forall j \in J \\
& U_{ij}, X_j, Y_j \in \{0, 1\} \quad \forall i \in I, \forall j \in J
\end{align*}
\]
BFCLP Model

\[F_{ij} = \{ k \in J \mid d_{ik} \leq d_{ij} \} \]

\[
\begin{align*}
\max Z_{\text{att}} &= \sum_{i \in I} \sum_{j \in J} c_{2j} q_i (1-U_{ij}) V_{ij} + \sum_{i \in I} \sum_{j \in J} q_i d_{ij} V_{ij} \\
\text{Subject to} \quad \sum_{j \in J} V_{ij} &= 1 \quad \forall i \in I \quad (7) \\
\sum_{j \in J} S_j &\leq r \quad (8) \\
S_j &\leq X_j - Y_j \quad \forall j \in J \quad (9) \\
\sum_{i \in I} V_{ij} &\leq n X_j (1 - S_j) \quad \forall j \in J \quad (10) \\
\sum_{k \in \delta_j} V_{ik} &\leq 1 + S_j - X_j \quad \forall i \in I, \forall j \in J \quad (11) \\
V_{ij} &\geq U_{ij} (1 - S_j) \quad \forall j \in J \quad (12) \\
S_j, V_{ij} &\in \{0,1\} \quad \forall i \in I, \forall j \in J \quad (13)
\end{align*}
\]
SOLVING BILEVEL PROBLEMS

BFCLP has binary variables in both the upper and lower level problems.

- **Moore and Bard (OR, 1990)** showed that MIBPPs are \(NP \)-hard.
- When the integrality constraints of a given MIBPP are relaxed, the solution of the relaxed problem does not provide a valid lower bound on the global optimum of the MIBPP even if that solution is integral.
- A branch-and-bound type of enumerative solution algorithm to tackle the MIBPP
 - The number of integer variables in either the leader’s or the follower’s subproblem is at most 10, which reveals the restricted applicability of Moore and Bard’s algorithm.

- It solves a variety of mixed-integer nonlinear BPPs including the purely integer linear BPP.
 - This technique is used to transform the mixed-integer inner problem constraint set of the given BPP into the continuous domain.
 - The transformation results in a polytope—provided that the inner problem is bounded—with all vertices defined by binary values.
SOLVING BILEVEL PROBLEMS

- Gümüş and Floudas (Comp. Mgmt Sci, 2005):
 - This polytope is actually equivalent to the convex hull of all integer feasible solutions of the respective inner problem.
 - The reformulation/linearization technique renders the inner problem linear in inner variables.
 - The inner problem can be then replaced with the set of equations that define its necessary and sufficient Karush-Kuhn-Tucker (KKT) optimality conditions.
 - In this way, the original BPP is reduced into a single level optimization problem that should be solved to global optimality.
 - Cplex accomplishes this final job if the problem is a mixed-integer linear problem.
 - Impractical even for a 10-facility and 100-customer instance of the BFCLP, since such a modest instance would require as many as 2,030 binary decision variables and 2,251 constraints.

A HEURISTIC METHOD FOR SOLVING MIBPPs

- Hecheng and Yuping (Journal of Systems Engineering and Electronics, 2008)
 - An exponential-distribution based genetic algorithm (GA)
 - For MIBPPs where the follower’s objective function and constraints are separable with respect to the follower’s variables,
 - For MIBPPs where they are convex when the follower’s variables are not restricted to integers.
 - The GA essentially fixes the leader’s decision variables, and obtains with a simplified branch-and-bound method (B&B) a proven optimal solution to the linear relaxation (LR) of the follower’s MIP.
 - The algorithm proceeds according to the principles of genetic search.
Method-1: TABU SEARCH with HASHING

Features of the applied \textit{tabu search algorithm with hashing (TSH)}

1. \textit{Initial Solution}

 If \(r < m \), we randomly select \(p = \max\{ r + 1, \log_2 m \} \) facilities and open them in the unprotected mode.

 - Solve the attacker’s problem by Cplex as a \textbf{RIM} problem since none of the initial \(p \) facilities is protected.

2. \textit{Neighborhood Structure}

 TSH capitalizes on a large-scale neighborhood structure comprising five types of moves.

Method-1: TABU SEARCH with HASHING

2. \textit{Neighborhood Structure (cont.)}

 \textbf{1-Drop}: One of the opened facilities will be closed.

 \textbf{1-Add}: One of the closed facilities will be opened either in the protected or unprotected mode.

 \textbf{1-Flip}: The protection status of an opened facility will be switched on or off.

 \textbf{1-Swap-Int}: Two facilities opened in opposite protections modes will swap their protection modes.

 \textbf{1-Swap-Ext}: One of the opened facilities will be replaced by one of the closed facilities, where the latter will be opened either in the protected or unprotected mode.

\textit{By Deniz Aksen on July 12th 2010 in Lisbon}
Method-1: TABU SEARCH with HASHING

2. Neighborhood Structure (cont.)

Table 1. Properties of the move types used in TSH

<table>
<thead>
<tr>
<th>Move Type</th>
<th>Changes ρ?</th>
<th>Changes π?</th>
<th>Max. Neigh. Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Add</td>
<td>yes</td>
<td>possible</td>
<td>$2(m-p)$</td>
</tr>
<tr>
<td>1-Drop</td>
<td>yes</td>
<td>possible</td>
<td>p</td>
</tr>
<tr>
<td>1-Flip</td>
<td>no</td>
<td>yes</td>
<td>p</td>
</tr>
<tr>
<td>1-Swap-Int</td>
<td>no</td>
<td>no</td>
<td>$\pi(p-\pi)$</td>
</tr>
<tr>
<td>1-Swap-Ext</td>
<td>no</td>
<td>possible</td>
<td>$\left\lceil \frac{2p(m-p)}{\text{RNS}} \right\rceil$ if $p > 1$, $2(m-1)$ otherwise.</td>
</tr>
</tbody>
</table>

RNS is short for ratio of neighborhood size.

3. Infeasible Solutions

- Throughout the TSH iterations, we do not allow any move to create an infeasible solution for the BFCLP.

- An infeasible solution is where the facility location-protection plan of the defender is too weak to ensure the sustainability of the service system in the wake of the worst-case attacks.
 - A facility location-protection plan of the defender is infeasible if $p \leq r$ and $\pi = 0$.
 - In response to such a plan, the attacker would interdict all facilities present, thereby paralyze the whole system.

By Deniz Aksen on July 12th 2010 in Lisbon
Method-1: TABU SEARCH with HASHING

4. Stopping Conditions

- **Condition-1**
 - completing the maximum number of iterations \(\text{Max}_\text{Iter} \), which is set equal to 200.

- **Condition-2**
 - reaching the maximum number of successive iterations during which the incumbent does not improve \(\text{Max}_\text{Nonimp}_\text{Iter} \), which is set equal to 100.

Method-1: TABU SEARCH with HASHING

4. Probabilistic Nature and Diversification of TSH

- **TSH** involves randomness which stems from:

 I. the random selection of an initial feasible facility location-protection plan, and

 II. the granularity of the 1-Swap-Ext neighborhood which is controlled by the value of the coefficient \(RNS \).

- **TSH** starts with a different initial solution in each run. Hence, it needs to be run multiple times with different random number seeds in order to get the best solution overall.

 In fact, we run TSH **five times** where each run is executed with a different random number seed.
Method-1: TABU SEARCH with HASHING

- Applying the **tabu search (TS) principles** by the book...

- **Hashing vectors for tabu search:**
 - First proposed by **Woodruff and Zemel** *(Annals of Operations Research, 1993)*
 - Any search algorithm should be prevented from falling back to a recently visited solution; otherwise can never escape local optima *(Woodruff and Zemel, 1993).*

Method-1: TSH — how to hash?

<table>
<thead>
<tr>
<th>Facility ID</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status trit</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

![Diagram showing the hash value calculation](image)

\[
Hash(\sigma) = \sum_{j=1}^{m} trit_j \times 3^{m-j} \\
Hash value \rightarrow 3^6 + 3^7 + 2 \times 3^5 + 2 \times 3^2 = 22,374
\]

Figure 1.

The **unique ternary string** representation and **hash value** of a sample BFCLP solution.
Hashing in TSH

Figure 2.
The doubly linked *HashList* to store the hash values in ascending order

Table 2.
Computation of the *hash value* of a neighborhood solution in TSH

<table>
<thead>
<tr>
<th>Move Type</th>
<th>ID of Fac.1 added or flipped</th>
<th>ID of Fac.2 dropped or flipped</th>
<th>Formula of h_{neigh} given the current solution σ and its hash value h_{neigh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Add</td>
<td>j</td>
<td>—</td>
<td>$(h_{\text{curr}} + \text{trit}_j \times 3^{m-k})$</td>
</tr>
<tr>
<td>1-Drop</td>
<td>—</td>
<td>k</td>
<td>$(h_{\text{curr}} - \text{trit}_k \times 3^{m-f})$</td>
</tr>
<tr>
<td>1-Flip</td>
<td>j</td>
<td>—</td>
<td>$(h_{\text{curr}} + 3^{m-f})$ if $\text{trit}j$ was 1 in σ; $(h{\text{curr}} - 3^{m-f})$ otherwise.</td>
</tr>
<tr>
<td>1-Swap-Int</td>
<td>j</td>
<td>k</td>
<td>$(h_{\text{curr}} + 3^{m-f} - 3^{m-k})$ where trit_j was 1 and trit_k was 2 in σ.</td>
</tr>
<tr>
<td>1-Swap-Ext</td>
<td>j</td>
<td>k</td>
<td>$(h_{\text{curr}} + \text{trit}_j \times 3^{m-f} - \text{trit}_k \times 3^{m-k})$</td>
</tr>
</tbody>
</table>
Improving the Efficiency of TSH

- **Woodruff and Zemel (1993)** have listed the following three goals an effective pair of a hash function and hash list should meet:

 1. Computation and update of the hash values should be as easy as possible.
 2. The integers generated should be in a range that requires reasonable storage and comparison effort.
 3. The *probability of collision* (also known as *hashing error*) should be low.

 - A collision occurs when the hash function returns the same hash value for two different solution vectors.

Method-2:
Sequential Solution Method (SSM)

- **SSM** achieves—compared to **TSH**—considerably faster CPU times in yielding a good feasible solution to the **BFCLP**.

- In **SSM**, the facility location and protection decisions of the defender are decoupled into a pair of pure fixed charge facility location and facility interdiction with protection problems which are solved sequentially in two stages.

- The two problems solved sequentially to yield a quick and favorable solution to **BFCLP** are formulated next.
Method-2: Sequential Solution Method (SSM)

SSM Stage-1 Problem: FCLP

\[
\min_{j \in \mathcal{J}} Z_1 = \sum_{j \in \mathcal{J}} f_j x_j + \sum_{i \in \mathcal{I}, j \in \mathcal{J}} (c_{ij} + d_{ij}) q_i u_{ij}
\]

Subject to

\[
\sum_{j \in \mathcal{J}} x_j \geq r + 1 \quad (17)
\]

\[
\sum_{j \in \mathcal{J}} u_{ij} = 1 \quad \forall i \in \mathcal{I} \quad (18)
\]

\[
\sum_{i \in \mathcal{I}} u_{ij} \leq n x_j \quad \forall j \in \mathcal{J} \quad (19)
\]

\[
\sum_{k \in \mathcal{J}_j} u_{ik} \geq x_j \quad \forall i \in \mathcal{I}, \forall j \in \mathcal{J} \quad (20)
\]

\[
u_{ij}, x_j \in \{0,1\} \quad \forall i \in \mathcal{I}, \forall j \in \mathcal{J} \quad (21)
\]

SSM Stage-2 Problem: RIMF-CE

\[
\min_{j \in \mathcal{J}_p^*} Z_{def}(\mathcal{J}_p^*) = \sum_{j \in \mathcal{J}_p^*} b_j y_j + \sum_{i \in \mathcal{I}, j \in \mathcal{J}_p^*} (c_{2j} + d_{ij}) q_i (1 - u_{ij}^*) v_{ij}
\]

Subject to

\[
y_j \in \{0,1\} \quad \forall i \in \mathcal{I}, \forall j \in \mathcal{J}_p^* \quad (23)
\]

where \(Y\) solves:

\[
\max_{i \in \mathcal{I}, j \in \mathcal{J}_p^*} Z_{att}(\mathcal{J}_p^*) = \sum_{i \in \mathcal{I}, j \in \mathcal{J}_p^*} c_{2j} q_i (1 - u_{ij}^*) v_{ij} + \sum_{i \in \mathcal{I}, j \in \mathcal{J}_p^*} q_i d_{ij} v_{ij} \quad (24)
\]
Method-2: Sequential Solution Method (SSM)

Subject to

\[
\sum_{j \in J_p} V_{ij} = 1 \quad \forall i \in I \tag{25}
\]

\[
\sum_{j \in J_p} S_j \leq r \tag{26}
\]

\[
S_j \leq 1 - Y_j \quad \forall j \in J_p \tag{27}
\]

\[
\sum_{i \in I} V_{ij} \leq n(1 - S_j) \quad \forall j \in J_p \tag{28}
\]

\[
\sum_{k \in J_i} V_{ik} \leq S_j \quad \forall i \in I, \forall j \in J_p \tag{29}
\]

\[
V_{ij} \geq U_{ij}^*(1 - S_j) \quad \forall j \in J_p \tag{30}
\]

\[
S_j , V_{ij} \in \{0,1\} \quad \forall i \in I, \forall j \in J_p \tag{31}
\]

AGENDA

- PROBLEM DEFINITION and DESCRIPTION
- BILEVEL PROGRAMMING
- LITERATURE REVIEW
- BFCLP MODEL
- SOLUTION METHODS
- COMPUTATIONAL RESULTS
- CONCLUSION
Computational Results

- **Computing Platform**
 - Microsoft Visual C++ 2005
 - Workstation with Intel Xeon X5460 3.16 GHz Quad-Core processor and 28 GB RAM. Each core on this computing platform’s processors attains a speed of approximately 4800 MIPS (million instructions per second).
 - The attacker’s problem conditional on the present protection plan obtained at each node of the binary enumeration tree \((BET)\) solved to optimality with Cplex 11.2.

Table 3.

Random problem generation template for 48 BFCLP instances

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>{10, 15, 20, 25}</td>
</tr>
<tr>
<td>(n)</td>
<td>100m</td>
</tr>
<tr>
<td>(r)</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>((R, L))</td>
<td>{(1000, 1500)}</td>
</tr>
<tr>
<td>((cx_i, cy_i))</td>
<td>(R_t = R \times U(0,1), \ \theta_i = 2\pi \times U(0,1)). Then, (cx_i = [R_t \times \cos \theta_i]) and (cy_i = [R_t \times \sin \theta_i]).</td>
</tr>
<tr>
<td>((fx_j, fy_j))</td>
<td>(fx_j = -0.5L + \frac{L}{m} \times U[0, m]) and (fy_j = -0.5L + \frac{L}{m} \times U[0, m])</td>
</tr>
<tr>
<td>(q_t)</td>
<td>(10 + 5 \times U[0, 18])</td>
</tr>
<tr>
<td>(f_j)</td>
<td>(10,000 + 1,250 \times U[0, 8])</td>
</tr>
<tr>
<td>(b_{j,\text{low}})</td>
<td>(0.5 \times f_j)</td>
</tr>
<tr>
<td>(b_{j,\text{high}})</td>
<td>(3.0 \times f_j)</td>
</tr>
<tr>
<td>(c_{i,j})</td>
<td>(10 + 2.5 \times U[0, 4])</td>
</tr>
<tr>
<td>(d_{i,j,\text{low}})</td>
<td>(0.1 \times \text{distance}(i, j))</td>
</tr>
<tr>
<td>(d_{i,j,\text{high}})</td>
<td>(0.2 \times \text{distance}(i, j))</td>
</tr>
</tbody>
</table>

By Deniz Aksen on July 12th 2010 in Lisbon
Computational Results

Table 4.
Comparison of TSH and SSM on instances with \((d_{ij})_{\text{low}} = 0.1 \times \text{distance}(i, j)\).

<table>
<thead>
<tr>
<th>Instance</th>
<th>TSH</th>
<th></th>
<th></th>
<th></th>
<th>SSM</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min (z^*_{\text{def}})</td>
<td>Avg. (z^*_{\text{def}})</td>
<td>CPU(_{\text{min}}) (sec)</td>
<td>CPU(_{\text{avg}}) (sec)</td>
<td>(z^*_{\text{SSM}})</td>
<td>CPU (sec)</td>
<td>PD(_{\text{best}}) (%)</td>
<td>PD(_{\text{avg}}) (%)</td>
</tr>
<tr>
<td>(10,1,lo)</td>
<td>383,583</td>
<td>383,583</td>
<td>0.3</td>
<td>0.6</td>
<td>402,397</td>
<td>0.3</td>
<td>4.90</td>
<td>4.90</td>
</tr>
<tr>
<td>(10,1,hi)</td>
<td>465,833</td>
<td>468,419</td>
<td>3.6</td>
<td>20.6</td>
<td>562,647</td>
<td>0.3</td>
<td>20.78</td>
<td>20.12</td>
</tr>
<tr>
<td>(10,2,lo)</td>
<td>383,583</td>
<td>383,583</td>
<td>0.3</td>
<td>0.5</td>
<td>426,613</td>
<td>0.2</td>
<td>11.22</td>
<td>11.22</td>
</tr>
<tr>
<td>(10,2,hi)</td>
<td>465,833</td>
<td>488,041</td>
<td>0.3</td>
<td>14.3</td>
<td>666,113</td>
<td>0.2</td>
<td>42.99</td>
<td>35.49</td>
</tr>
<tr>
<td>(25,2,lo)</td>
<td>917,001</td>
<td>917,001</td>
<td>21.0</td>
<td>227.9</td>
<td>917,001</td>
<td>3.2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(25,2,hi)</td>
<td>1,153,094</td>
<td>1,153,094</td>
<td>3,318.8</td>
<td>4,775.2</td>
<td>1,247,001</td>
<td>3.2</td>
<td>8.14</td>
<td>8.14</td>
</tr>
<tr>
<td>(25,3,lo)</td>
<td>917,001</td>
<td>917,001</td>
<td>49.2</td>
<td>237.9</td>
<td>917,001</td>
<td>5.3</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(25,3,hi)</td>
<td>1,240,523</td>
<td>1,244,311</td>
<td>8,390.5</td>
<td>10,513.5</td>
<td>1,247,001</td>
<td>5.3</td>
<td>0.52</td>
<td>0.22</td>
</tr>
<tr>
<td>Average</td>
<td>718,542</td>
<td>727,791</td>
<td>553.8</td>
<td>882.7</td>
<td>789,041</td>
<td>1.5</td>
<td>11.53</td>
<td>10.11</td>
</tr>
</tbody>
</table>

By Deniz Aksen on July 12th 2010 in Lisbon

Table 5.
Comparison of TSH and SSM on instances with \((d_{ij})_{\text{low}} = 0.2 \times \text{distance}(i, j)\).

<table>
<thead>
<tr>
<th>Instance</th>
<th>TSH</th>
<th></th>
<th></th>
<th></th>
<th>SSM</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min (z^*_{\text{def}})</td>
<td>Avg. (z^*_{\text{def}})</td>
<td>CPU(_{\text{min}}) (sec)</td>
<td>CPU(_{\text{avg}}) (sec)</td>
<td>(z^*_{\text{SSM}})</td>
<td>CPU (sec)</td>
<td>PD(_{\text{best}}) (%)</td>
<td>PD(_{\text{avg}}) (%)</td>
</tr>
<tr>
<td>(10,1,lo)</td>
<td>625,715</td>
<td>625,715</td>
<td>0.6</td>
<td>3.8</td>
<td>625,715</td>
<td>0.4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(10,1,hi)</td>
<td>706,085</td>
<td>736,985</td>
<td>1.3</td>
<td>17.7</td>
<td>860,860</td>
<td>0.2</td>
<td>21.92</td>
<td>16.81</td>
</tr>
<tr>
<td>(10,2,lo)</td>
<td>625,715</td>
<td>625,715</td>
<td>0.6</td>
<td>1.0</td>
<td>625,715</td>
<td>0.2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(10,2,hi)</td>
<td>843,632</td>
<td>853,580</td>
<td>12.6</td>
<td>53.4</td>
<td>875,965</td>
<td>0.2</td>
<td>3.83</td>
<td>2.62</td>
</tr>
<tr>
<td>(25,2,lo)</td>
<td>1,425,903</td>
<td>1,547,308</td>
<td>35.5</td>
<td>504.3</td>
<td>1,450,013</td>
<td>2.0</td>
<td>1.69</td>
<td>-6.29</td>
</tr>
<tr>
<td>(25,2,hi)</td>
<td>1,680,009</td>
<td>1,706,407</td>
<td>2004.3</td>
<td>3119.5</td>
<td>1,944,672</td>
<td>2.0</td>
<td>15.75</td>
<td>13.96</td>
</tr>
<tr>
<td>(25,3,lo)</td>
<td>1,425,903</td>
<td>1,508,689</td>
<td>309.3</td>
<td>1268.6</td>
<td>1,450,013</td>
<td>3.8</td>
<td>1.69</td>
<td>-3.89</td>
</tr>
<tr>
<td>(25,3,hi)</td>
<td>1,803,353</td>
<td>1,869,447</td>
<td>957.1</td>
<td>11287.1</td>
<td>2,150,013</td>
<td>3.7</td>
<td>19.22</td>
<td>15.01</td>
</tr>
<tr>
<td>Average</td>
<td>1,081,253</td>
<td>1,120,756</td>
<td>276.3</td>
<td>980.9</td>
<td>1,170,775</td>
<td>1.1</td>
<td>7.82</td>
<td>4.07</td>
</tr>
</tbody>
</table>

By Deniz Aksen on July 12th 2010 in Lisbon
Computational Results

Table 6.
Change of the defender’s objective value with respect to problem parameters

<table>
<thead>
<tr>
<th></th>
<th>$(d_{ij})_{low}$</th>
<th>$(d_{ij})_{high}$</th>
<th>$(b_j)_{low}$</th>
<th>$(b_j)_{high}$</th>
<th>Grand Avg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r = 1$</td>
<td>631,468</td>
<td>739,834</td>
<td>979,986</td>
<td>1,082,604</td>
<td>860,027</td>
</tr>
<tr>
<td>$r = 2$</td>
<td>631,468</td>
<td>818,270</td>
<td>979,986</td>
<td>1,214,888</td>
<td>911,153</td>
</tr>
<tr>
<td>$r = 3$</td>
<td>631,468</td>
<td>858,747</td>
<td>979,986</td>
<td>1,250,072</td>
<td>936,578</td>
</tr>
<tr>
<td>Grand Avg.</td>
<td>718,547</td>
<td></td>
<td>1,081,253</td>
<td></td>
<td>899,898</td>
</tr>
</tbody>
</table>

By Deniz Aksen on July 12th 2010 in Lisbon

Computational Results

- The columns of Table 6 corresponding to $(b_j)_{high}$ reveal that as r increases the Defender’s objective value Z_{def} takes on larger values.
 - This is a consequence of the demand-weighted traveling costs increased by extra interdictions.
 - However, that is true only when the protection costs are high and the cost of protecting added facilities exceeds the cost of capacity expansions induced by extra interdictions.
 - When the protection costs are low, on the other hand, the defender can afford to protect all the opened facilities, and the value of r does not have any effect on the average Z_{def}.
 - It is also expected that Z_{def} is higher when d_{ij} is high.

By Deniz Aksen on July 12th 2010 in Lisbon
Conclusion

The main contribution of the paper is:

- the simultaneous consideration of facility location and protection decisions of the defender as well as the interdiction decision of the attacker for the first time in the literature.

- Moreover, the number of facilities opened is a decision variable as is the case in the well-known uncapacitated facility location problem (UFLP).
Conclusion

We developed two heuristic methods to solve the BFCLP.

1. **TSH**: a probabilistic TS algorithm with a hash list which records the objectives and hash values of all solutions explored to prevent *cycling*.
 - The use of *hashing* helps avoid cycling and boosts the efficiency of the tabu search by minimizing the number of objective function evaluations.

2. **SSM (sequential solution method)**: sequentially rather than concurrently.
 - First, a **UFLP** is solved disregarding the attacker, and an optimal subset of unprotected facility locations is obtained.
 - Given this optimal subset, the defender determines in a bilevel programming framework which facilities to protect against the attacker to minimize his own post-attack costs.

The results obtained on a test bed of 48 randomly generated instances indicate that:

- **TSH** outperforms the **SSM** method in solution quality, but requires much longer CPU times.
 - The objective value of the defender found by **SSM** is on average *9.67% inferior* to the minimum objective value obtained in a 5-run multi-start implementation of **TSH**.
 - One can choose either of **TSH** and **SSM** depending on the desired accuracy and urgency of the solution to the problem at hand.
Conclusion

There can be two extensions of this work.

1. Formulating the same BFCLP model such that partial interdiction of facilities is allowed.
 - This means that facilities will not be rendered totally inoperative after an attack, but will continue to provide service with less than full capacity depending on the degree of interdiction.

2. Considering partial protection of facilities for a better utilization of the limited protection resources.

Thanx for your listening!

All critiques, comments, and questions are candidly appreciated!