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A SUPPORT FUNCTION BASED ALGORITHM FOR
OPTIMIZATION WITH EIGENVALUE CONSTRAINTS∗

EMRE MENGI†

Abstract. Optimization of convex functions subject to eigenvalue constraints is intriguing
because of peculiar analytical properties of eigenvalue functions and is of practical interest because
of a wide range of applications in fields such as structural design and control theory. Here we focus
on the optimization of a linear objective subject to a constraint on the smallest eigenvalue of an
analytic and Hermitian matrix-valued function. We propose a numerical approach based on quadratic
support functions that overestimate the smallest eigenvalue function globally. The quadratic support
functions are derived by employing variational properties of the smallest eigenvalue function over a set
of Hermitian matrices. We establish the local convergence of the algorithm under mild assumptions
and deduce a precise rate of convergence result by viewing the algorithm as a fixed point iteration.
The convergence analysis reveals that the algorithm is immune to the nonsmooth nature of the
smallest eigenvalue. We illustrate the practical applicability of the algorithm on the pseudospectral
functions.
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1. Introduction. Given an analytic and Hermitian matrix-valued function
A(ω) : Rd → Cn×n, this work concerns optimization problems of the form

(1.1) maximize cTω subject to λmin(A(ω)) ≤ 0,

where c ∈ Rd is fixed and λmin(·) denotes the smallest eigenvalue, and where we
assume that the feasible set {ω ∈ Rd | λmin(A(ω)) ≤ 0} is bounded in order to ensure
the well-posedness of the problem. We do not presume convexity or linearity on A(ω).
Thus, some or all entries of A(ω) can be nonlinear functions of ω. Furthermore, the
feasible set for (1.1), that is, the set of ω such that λmin(A(ω)) ≤ 0, can be nonconvex.
Two quantities that can be cast as optimization problems of the form (1.1) are the
ε-pseudospectral abscissa and radius [23] of a given square matrix A. These quantities
correspond to the real part of the rightmost and the modulus of the outermost points
in the set composed of the eigenvalues of all matrices within an ε-neighborhood of
A with respect to the matrix 2-norm. They have received considerable attention
because of their association with the transient behavior of the autonomous systems
x′(t) = Ax(t) and xk = Axk−1.

Various other applications in engineering give rise to problems of the form (1.1)
either by replacing the smallest eigenvalue with the largest eigenvalue or by revers-
ing the direction of the inequality. In structural design, a classical problem is the
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minimization of the volume or weight subject to a lower bound on the smallest eigen-
value [1]. In robust control theory, it is desirable to design a system subject to the
largest eigenvalue not exceeding a prescribed tolerance. Even though we focus on
framework (1.1) and derive an algorithm for that setting, it appears that the algo-
rithm that we come up with works well in practice for such variations. An important
family that is related to (1.1), with the direction of the inequality reversed, is the
family of nonconvex semidefinite programs. The algorithm may work well for the
solution of certain nonconvex semidefinite programs locally. We elaborate on such
variations later in this paper.

In a recent work [19], we pursued support function based ideas to optimize a
prescribed eigenvalue of A(ω) globally on a box B ⊂ Rd. Remarkably, such ideas
yield a linearly convergent algorithm that overcomes nonconvexity and nonsmooth-
ness intrinsic to eigenvalue functions. Here we explore the use of support functions
for the numerical solution of (1.1). We convexify and smooth the problem (1.1) by
approximating the eigenvalue function λmin(A(·)) with a quadratic support function
qk(·) about a given ω(k) ∈ Rd satisfying

qk(ω(k)) = λmin(A(ω(k))) and qk(ω) ≥ λmin(A(ω))

for all ω ∈ Rd. Here ω(k) is assumed to be feasible so that λmin(A(ω(k))) ≤ 0. Thus,
the original nonconvex and nonsmooth problem (1.1) is replaced by

(1.2) maximize cTω subject to qk(ω) ≤ 0,

which can be solved analytically, and has a maximizer ω∗ that is suboptimal yet
feasible with respect to the original problem. We build a new quadratic support
function qk+1(ω) about the maximizer ω(k+1) = ω∗, replace the constraint in (1.2)
with qk+1(ω) ≤ 0, and solve the updated convex smooth optimization problem. The
practicality of the algorithm rests on a global upper bound on the second derivatives
of the smallest eigenvalue function, as the quadratic support functions are built on the
existence of such upper bounds. In various cases it is feasible to deduce such bounds
analytically.

Optimization based on support functions dates back to the cutting plane method
introduced by Kelley [13] and Cheney and Goldstein [6]. These original cutting plane
methods are developed to minimize a linear objective subject to convex constraints
by employing support functions. With focused research on combinatorial and in-
teger optimization problems, the cutting plane methods are also adopted to solve
relaxations of these computationally hard problems [20]. The original cutting plane
method is suitable for convex constraints only, and extensions in the presence of non-
convex constraints to locate a locally optimal solution do not appear straightforward.
More recently, inspired by Kelley’s cutting plane method, bundle methods became
popular for nonsmooth optimization built around linear support functions defined in
terms of subgradients [14, 17, 16]. Bundle methods are especially effective for the un-
constrained optimization of a convex nonsmooth function. In the nonconvex setting,
construction of global support functions in terms of subgradients becomes a challenge;
see, for instance, [11] and references therein for the latest developments concerning
nonconvex bundle methods.

Outline. In the next section we derive support functions for λmin(A(ω)) and
specify the algorithm based on the solution of the convex and smooth problem (1.2).
In section 3, we show that the sequence generated by the algorithm converges to a
point where the first order optimality conditions for a local maximizer of (1.1) hold
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under mild assumptions. Remarkably the argument in section 3 establishes that the
convergence to a first order optimal point occurs also in the nonsmooth case, that is,
regardless of the multiplicity of the smallest eigenvalue at the converged point. Section
4 is on a practical variant of the algorithm that converges to a local maximizer of (1.1).
Section 5 is devoted to a rate of convergence analysis of the algorithm, by viewing
the algorithm as a fixed point iteration. The practicality of the algorithm relies on
the deduction of an upper bound on the second derivatives of the smallest eigenvalue
function, either analytically or numerically. We present a result in section 6 that
facilitates deducing such an upper bound analytically. The practical usefulness of the
algorithm is illustrated on the pseudospectral functions in section 7. Finally, section 8
concerns the applications of the algorithm to the variations of framework (1.1) either
with a largest eigenvalue constraint instead of the smallest eigenvalue constraint or
with a lower bound constraint on the smallest eigenvalue.

2. Derivation of the algorithm. We begin with the derivation of the support
functions, which depends on the analytical properties of λmin (A(ω)). We summarize
the relevant classical results below [21, 15].

Lemma 2.1. Let A(ω) : Rd → Cn×n be Hermitian and analytic, and let Φ : R→
Cn×n be defined by Φ(α) := A(ω̂ + αp) for given ω̂, p ∈ Rd. Then the following hold:

(i) There exist functions φ1, . . . , φn : R → R that are real analytic on R such
that {φ1(α), . . . , φn(α)} correspond to the set of eigenvalues of Φ(α) for all
α ∈ R.

(ii) Suppose that φ(α) := λmin(Φ(α)) is simple for all α on an open interval I in
R. Then φ(α) is analytic on I.

(iii) The left-hand φ′−(α) and the right-hand φ′+(α) derivatives of φ(α) :=
λmin(Φ(α)) exist everywhere. Furthermore, φ′−(α) ≥ φ′+(α) at all α ∈ R.

(iv) The eigenvalue function λmin(A(ω)) is twice continuously differentiable at all
ω ∈ Rd where it is simple. Furthermore, at all such ω we have

∂λmin(A(ω))
∂ωj

= vn(ω)
∗ ∂A(ω)
∂ωj

vn(ω)

and

∂2λmin(A(ω))
∂ωk ∂ω`

= v∗n(ω)
∂2A(ω)
∂ωk ∂ωl

vn(ω)

+ 2·<

[
n−1∑
m=1

1

λmin(A(ω))−λm(ω)

(
vn(ω)

∗ ∂A(ω)
∂ωk

vm(ω)

)(
vm(ω)∗

∂A(ω)
∂ω`

vn(ω)

)]
,

where λm(ω) denotes the mth largest eigenvalue of A(ω) and vm(ω) denotes
an associated eigenvector that is analytic along every line in Rd such that
{v1(ω), . . . , vn(ω)} is orthonormal.

In the theorem below and elsewhere, ‖ · ‖ denotes the Euclidean norm on Rd, the
scalar γ is positive and denotes a global upper bound satisfying

(2.1) λmax

[
∇2λmin(A(ω))

]
≤ γ ∀ω ∈ Rd such that λmin(A(ω)) is simple,

and λmax[·] represents the largest eigenvalue of its matrix argument. This result may
appear to follow from a straightforward application of Taylor’s theorem. But the
nonsmooth nature of λmin(A(ω)) complicates matters.
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Theorem 2.2 (support functions). Suppose A(ω) : Rd → Cn×n is Hermitian
and analytic, γ ∈ R satisfies (2.1), and ω(k) ∈ Rd is such that λmin(A(ω(k))) is simple.
Then

(2.2) λmin(A(ω)) ≤ qk(ω) := λk +∇λTk (ω − ω(k)) +
γ

2
‖ω − ω(k)‖2 ∀ω ∈ Rd,

where λk := λmin(A(ω(k))) and ∇λk := ∇λmin(A(ω(k))).

Proof. Let p = (ω − ω(k))/‖ω − ω(k)‖, and define φ(α) := λmin

(
A(ω(k) + αp)

)
.

Denote the points on (0, ‖ω − ω(k)‖) where λmin

(
A(ω(k) + αp)

)
is not simple with

α1, . . . , αm. There are finitely many such points, because λmin

(
A(ω(k) + αp)

)
is the

minimum of n analytic functions from part (i) of Lemma 2.1. Indeed, two analytic
functions are identical or can intersect each other at finitely many points on a finite
interval.

Partition the open interval (0, ‖ω−ω(k)‖) into open subintervals Ij := (αj , αj+1)
for j = 0, . . . ,m where α0 = 0, αm+1 = ‖ω − ω(k)‖. On each open subinterval Ij the
function φ(α) is analytic from part (ii) of Lemma 2.1. Indeed φ(α) = φij (α) on the
closure of Ij for some analytic φij (α) stated in part (i) of Lemma 2.1, and moreover
φ′+(αj) = φ′ij (αj). Thus applying Taylor’s theorem, for each α on the closure of Ij ,
we deduce

φ(α) = φ(αj) + φ′+(αj)(α− αj) +
φ′′(η)

2
(α− αj)2

= φ(αj) + φ′+(αj)(α− αj) +
pT∇2λmin(A(ω(k) + ηp))p

2
(α− αj)2

≤ φ(αj) + φ′+(αj)(α− αj) +
γ

2
(α− αj)2

(2.3)

for some η ∈ Ij , where the second equality is due to the twice differentiability of
λmin(A(ω)) at ω(k) + ηp (part (iv) of Lemma 2.1), and the last inequality is due to
pT∇2λmin(A(ω(k) + ηp))p ≤ λmax

[
∇2λmin(A(ω(k) + ηp))

]
and (2.1). Furthermore,

for α ∈ Ij , an application of the mean value theorem yields

φ′(α)− φ′+(αj)

α− αj
= φ′′(ε) = pT∇2λmin(A(ω(k) + εp))p ≤ γ

for some ε ∈ (αj , α). Thus

(2.4) φ′(α) ≤ φ′+(αj) + γ(α− αj).

Next we claim

(2.5) φ(αm+1) ≤ φ(αj) + φ′+(αj)(αm+1 − αj) +
γ

2
(αm+1 − αj)2

for j = 0, . . . ,m. This is certainly true for j = m from (2.3) on the interval Im
and with α = αm+1. Suppose that inequality (2.5) holds for k ≥ 1. Exploiting
φ′+(αk) ≤ φ′−(αk) (see part (iii) of Lemma 2.1) and then applying inequalities (2.3)
and (2.4) with α = αk on the interval Ik−1 lead us to

φ(αm+1) ≤ φ(αk) + φ′−(αk)(αm+1 − αk) +
γ

2
(αm+1 − αk)2

≤ φ(αk−1) + φ′+(αk−1)(αk − αk−1) +
γ

2
(αk − αk−1)2

+[φ′+(αk−1) + γ(αk − αk−1)](αm+1 − αk) +
γ

2
(αm+1 − αk)2

= φ(αk−1) + φ′+(αk−1)(αm+1 − αk−1) +
γ

2
(αm+1 − αk−1)2.
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Thus, by induction, we conclude

φ(αm+1) ≤ φ(α0) + φ′+(α0)(αm+1 − α0) +
γ

2
(αm+1 − α0)2.

Recalling φ(α0) = φ(0) = λk, φ′+(α0) = φ′(0) = ∇λTk p, and (αm+1−α0) = ‖ω−ω(k)‖,
we obtain the desired inequality

λmin(A(ω)) ≤ λk +∇λTk (ω − ω(k)) +
γ

2
‖ω − ω(k)‖2.

Note. The following more general form of Theorem 2.2 is also apparent by replac-
ing Rd with a convex subset C ⊆ Rd: If the scalar γ is an upper bound as in (2.1) on
C rather than on Rd, for each ω(k) ∈ C where λmin(A(ω(k))) is simple, the inequality
in (2.2) holds for all ω ∈ C, that is, qk(ω) is a support function on C.

Given a feasible point ω(0) ∈ Rd satisfying λmin(A(ω(0))) ≤ 0, the algorithm
generates a sequence {ω(k)} of feasible points in Rd. The update of ω(k) is based on
the solution of the following convex and smooth optimization problem:

(2.6)

maximize cTω subject to qk(ω) := λk +∇λTk (ω − ω(k)) +
γ

2
‖ω − ω(k)‖2 ≤ 0.

The next point ω(k+1) is defined to be the unique maximizer of the problem above.
Notice that the feasible set of the convex problem (2.6) is contained inside the feasible
set of the original problem (1.1), i.e.,

Fk := {ω ∈ Rd | qk(ω) ≤ 0} ⊆ F := {ω ∈ Rd | λmin(A(ω)) ≤ 0}.

Thus ω(k+1) ∈ Fk ⊆ F remains feasible. It is assumed by the algorithm that
λmin(A(ω(k))) is simple for each ω(k) in the sequence, which introduces no difficulties
in practice, since the set of points ω such that λmin(A(ω)) is not simple is a subset of
Rd of measure zero. On the other hand, being close to a multiple eigenvalue does not
cause harm.

There is a degenerate case for the convergence of the algorithm as suggested by
the following observation.

Theorem 2.3. Suppose the maximizer ω∗ of (2.6) is such that ∇qk(ω∗) = 0.
Then (i) ω∗ = ω(k) and (ii) ∇λk = 0.

Proof. The maximizer ω∗ of (2.6) must be attained on the boundary of Fk, that
is, qk(ω∗) = 0. Assuming

(2.7) ∇qk(ω∗) = ∇λk + γ(ω∗ − ω(k)) = 0

yields qk(ω∗) = λk − γ
2 ‖ω∗ − ω

(k)‖2 = 0. Furthermore, since ω(k) is feasible, λk =

λmin(A(ω(k))) ≤ 0. This would imply λk = 0 and ω∗ = ω(k). Now the second assertion
follows from (2.7).

The first assertion of the theorem above means that ω(s) = ω(k) and qs(ω) ≡ qk(ω)
for each s > k. Thus, convergence to a point ω∗ such that ∇λmin(A(ω∗)) = 0 seems
possible. We rule this out by assuming ∇λk 6= 0 for each k.

Now we apply the Karush–Kuhn–Tucker conditions to the constrained problem
(2.6). The maximizer ω∗ must satisfy

(2.8) c = µ∇qk(ω∗) and qk(ω∗) = 0
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for some positive µ ∈ R. Solving the equations above for ω∗ and the positive scalar
µ, and setting ω(k+1) = ω∗, leads us to the update rule

(2.9) ω(k+1) = ω(k) +
1

γ

[
1

µ+
· c−∇λk

]
, where µ+ =

‖c‖√
‖∇λk‖2 − 2γλk

.

Given a feasible point ω(0) ∈ F to start with, the basic algorithm generates the
sequence {ω(k)} defined by the update rule (2.9).

3. Convergence. We establish that the sequence {ω(k)} converges to a point
ω∗ that satisfies the first order necessary condition

(3.1) ∃µ > 0 s.t. c = µ∇λmin(A(ω∗)) and λmin(A(ω∗)) = 0

for optimality for the optimization problem (1.1) under mild assumptions and when
λmin(A(ω∗)) is simple. We also prove that the first order necessary condition holds in
terms of generalized gradients [7, 8], in the nonsmooth case, when λmin(A(ω∗)) is not
simple. Violation of the first order condition (3.1) is equivalent to the existence of a
feasible ascent direction as stated below. This follows from an application of Farkas’
lemma [4, p. 263] to our setting.

Lemma 3.1. Suppose that λmin(A(ω∗)) is simple and ∇λmin(A(ω∗)) 6= 0. Fur-
thermore, suppose ω∗ ∈ F is a point where the optimality condition (3.1) does not
hold. Then there exists p ∈ Rd such that

cT p > 0 and ∇λmin(A(ω∗))
T p < 0.

The next theorem relates the local maximizers of problems (1.1) and (2.6).

Theorem 3.2. The following hold for each ω(k) ∈ Rd such that λmin(A(ω(k))) is
simple and ∇λmin(A(ω(k))) 6= 0:

(i) If the point ω(k) is a local maximizer of (1.1), then it is a local maximizer of
(2.6).

(ii) On the other hand, if ω(k) is such that c 6= µ∇λmin(A(ω(k))) for all µ > 0
or λmin(A(ω(k))) 6= 0, that is, the first order optimality condition for (1.1) is
violated at ω(k), then ω(k) is not a local maximizer of (2.6).

Proof. For assertion (i), if ω(k) ∈ F is a local maximizer of (1.1), then there exists
a δ > 0 such that

cTω(k) ≥ cTω ∀ω ∈ B(ω(k), δ) ∩ F ,
where B(ω(k), δ) := {ω ∈ Rd | ‖ω − ω(k)‖ ≤ δ}. But notice that ω(k) ∈ Fk (i.e.,
qk(ω(k)) = 0), and due to the property Fk ⊆ F we have cTω(k) ≥ cTω for all ω ∈
B(ω(k), δ) ∩ Fk, meaning ω(k) is a local maximizer of (2.6). This proves (i).

For assertion (ii), if ω(k) ∈ F does not satisfy the first order optimality condi-
tion for problem (1.1), then there exists a direction p ∈ Rd such that cT p > 0 and
∇λmin(A(ω(k)))T p < 0 due to Lemma 3.1. But then, for all small α > 0, we have

qk(ω(k) + αp) = λk +∇λTk (αp) +O(α2) < λk ≤ 0 and cT (ω(k) + αp) > cTω(k),

where λk := λmin(A(ω(k))) and ∇λk := ∇λmin(A(ω(k))). Thus ω(k) is not a local
maximizer of (2.6).

An implication of part (i) of the theorem above is that if ω(k) ∈ F is a local
maximizer of (1.1), then ω(s) = ω(k) for each s > k. This type of finite convergence
to a local maximizer is unlikely. For the main convergence results, we first observe
that the values of the objective function must converge.
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Lemma 3.3. The sequence {cTω(k)} is monotone increasing and convergent.

Proof. Recall that

ω(k+1) = arg max
qk(ω)≤0

cTω.

Since ω(k) is feasible with respect to the problem above, we must have cTω(k+1) ≥
cTω(k). Thus the sequence {cTω(k)} is monotone increasing. Moreover, denoting a
global maximizer for the original problem (1.1) with ω∗, due to Fk ⊆ F , we have
cTω∗ ≥ cTω(k+1). Thus the sequence {cTω(k)} is also bounded above, meaning the
sequence must converge.

Since each ω(k) belongs to the bounded set F , the sequence {ω(k)} must have
convergent subsequences by the Bolzano–Weierstrass theorem. First we establish
the convergence of each of these subsequences to a point satisfying the optimality
condition (3.1).

Theorem 3.4 (convergence of subsequences). Suppose the sequence {ω(k)} is
such that λmin(A(ω(k))) is simple, and ∇λmin(A(ω(k))) 6= 0 for each k ∈ N. Consider
a convergent subsequence of {ω(k)} with limit ω∗ such that λmin(A(ω∗)) is simple.
The point ω∗ satisfies the first order necessary condition (3.1).

Proof. Let us denote the convergent subsequence of {ω(k)} with {ω(kj)}. Further-
more, let λkj := λmin(A(ω(kj))), λ∗ := λmin(A(ω∗)), and ∇λkj := ∇λmin(A(ω(kj))),

∇λ∗ := ∇λmin(A(ω∗)). Note that limj→∞ ω(kj) = ω∗ must be feasible, since all ω(k)

are feasible and λmin(A(ω)) varies continuously with respect to ω.
For the sake of contradiction, suppose ω∗ violates the optimality condition (3.1).

We infer from Lemma 3.1 the existence of a direction p ∈ Rd such that cT p = η > 0
and ∇λT∗ p = −β < 0. Without loss of generality, we can assume ‖p‖ = 1. There
exists a ball B(ω∗, δ) such that λmin(A(ω)) is simple for all ω ∈ B(ω∗, δ), due to the
continuity of the eigenvalues of A(ω). Furthermore, there exists an integer j′ such
that each ω(kj) for j ≥ j′ lies in B(ω∗, δ). Also, part (iv) of Lemma 2.1 (indicating the
continuity of the partial derivatives of λmin(A(ω)) on B(ω∗, δ)) implies the existence
of an integer j′′ ≥ j′ such that

(3.2) ‖∇λ∗ −∇λkj‖ ≤ β/2 ∀j ≥ j′′.

We benefit from the convergence of {cTω(k)} (Lemma 3.3); specifically, below we
show that the existence of the feasible ascent direction p conflicts with the monotonic-
ity of this sequence. In this respect we note that limk→∞ cTω(k) = cTω∗. For some
k′ we must have

(3.3) 0 ≤ (cTω∗ − cTω(k)) ≤ (ηβ)/(2γ) ∀k ≥ k′.

Consider any ω(kj) such that j ≥ j′′ and kj ≥ k′. Recalling λkj ≤ 0, since ω(kj) is
feasible, the corresponding support function satisfies

qkj (ω(kj) + αp) = λkj +∇λTkj (αp) +
γ

2
α2 ≤ 0

for all α ∈ [0, (2/γ)(−∇λTkjp)]. Furthermore,

‖∇λ∗−∇λkj‖ ≥ (∇λkj−∇λ∗)T p =⇒ −∇λTkjp ≥ −∇λ
T
∗ p−‖∇λ∗−∇λkj‖ ≥ β/2,
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where the last inequality is due to (3.2). Thus for α̃ = (2/γ)(−∇λTkjp), and employing

(3.3), we deduce

cT (ω(kj) + α̃p) = cTω(kj) + (α̃)cT p

≥ cTω∗ + (ηβ)/(2γ) > cTω∗.

Now ω(kj)+α̃p is a feasible point of the optimization problem max
{
cTω | qkj (ω) ≤ 0

}
,

yielding cT (ω(kj+1)) ≥ cT (ω(kj) + α̃p) > cTω∗. This last inequality contradicts (3.3).
Thus, ω∗ must satisfy the optimality condition (3.1).

The convergence of the sequence {ω(k)} itself is established below, with the ad-
ditional mild assumption that ‖∇λmin(A(ω(k)))‖ is uniformly bounded away from
zero.

Lemma 3.5. Suppose {ω(k)} is such that λmin(A(ω(k))) is simple, and
∇λmin(A(ω(k))) 6= 0 for each k ∈ N. Then

(3.4) λmin(A(ω(k)))→ 0 as k →∞.

Proof. We adopt the notation used in the proof of Theorem 3.4, in particular,
λk := λmin(A(ω(k))) and ∇λk := ∇λmin(A(ω(k))). Furthermore, M := sup{‖∇λk‖ |
k ∈ N}. Below we show that the violation of (3.4) also contradicts the monotonicity
of {cTω(k)}.

Let us suppose the contrary of (3.4), that is, there exists an ε > 0 such that

∀N ∃k > N, λk ≤ −ε.

For all k large enough, it is also true that cTω∗ − cTω(k) ≤ m · ‖c‖2 (by Lemma 3.3),
where

m :=
1

2
min

(
ε

2M‖c‖
,

√
ε

‖c‖√γ

)
.

Thus, choose k′ large enough so that

λk′ ≤ −ε and cTω∗ − cTω(k′) ≤ m · ‖c‖2.

Let us consider the support function qk′(ω
(k′) +αp) restricted to the direction p := c,

and for the step-lengths α ∈ [0, 2m]. The condition qk′(ω
(k′) + αp) ≤ 0 holds for all

α ∈ [0, 2m], since

qk′(ω
(k′) + αp) = λk′ +∇λTk′(αp) +

γ

2
α2‖p‖2

≤ −ε+ α‖∇λk′‖‖p‖+
γ

2
α2‖p‖2

≤ −ε+ ε/2 +
γ

2
α2‖c‖2 ≤ 0.

In particular, for α̃ := 2m, we have

cT (ω(k′) + α̃p) = cTω(k′) + α̃ · ‖c‖2

≥ cTω∗ +m · ‖c‖2 > cTω∗,

implying cTω(k′+1) > cTω∗, which contradicts the monotonicity of {cTω(k)}.
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Theorem 3.6 (convergence). Suppose {ω(k)} is such that λmin(A(ω(k))) is sim-
ple, and there exists a real scalar m > 0 satisfying ‖∇λmin(A(ω(k)))‖ ≥ m for each
k ∈ N. Then limk→∞ θk = 0, where

θk := arccos

(
cT ∇λmin(A(ω(k)))

‖c‖‖∇λmin(A(ω(k)))‖

)
.

Proof. The update rule (2.9) can be arranged as

ω(k+1) − ω(k) =
1

γ

[√
‖∇λmin(A(ω(k)))‖2 − 2γλmin(A(ω(k)))

‖c‖
· c−∇λmin(A(ω(k)))

]
.

Multiplying both sides by cT and taking the limits of both sides yield

lim
k→∞

[
‖c‖ ·

√
‖∇λmin(A(ω(k)))‖2 − 2γλmin(A(ω(k)))− cT∇λmin(A(ω(k)))

]
= 0.

Furthermore, by Lemma 3.5, the sequence {λmin(A(ω(k)))} approaches zero, and the
equation above simplifies to

lim
k→∞

[
‖c‖ · ‖∇λmin(A(ω(k)))‖ − cT∇λmin(A(ω(k)))

]
= lim
k→∞

‖c‖ · ‖∇λmin(A(ω(k)))‖ · [1− cos(θk)] = 0.

Since ‖∇λmin(A(ω(k)))‖ is assumed to be uniformly bounded away from zero, limk→∞
θk = 0 as desired.

A corollary of the last two results is that whenever ω(k) → ω∗, the first order nec-
essary conditions hold at ω∗ in the more general nonsmooth setting, that is, regardless
of the multiplicity of λmin(A(ω∗)). To see this, first note that the eigenvalue function
λmin(A(ω)) is differentiable everywhere except on a subset Ω of Rd of measure zero.
The generalized gradient of λmin(A(·)) at ω∗ is given by [8, p. 11]

∂λmin(A(ω∗)) := co

{
lim
k→∞

∇λmin(A(ω̃(k))) | ω̃(k) → ω∗, ω̃(k) /∈ Ω ∀k,{
∇λmin(A(ω̃(k)))

}
is convergent

}
,

where co(H) denotes the convex hull of the set H. The first order necessary condition
in terms of this generalized gradient, regardless of the multiplicity of λmin(A(ω∗)),
takes the form [3, Theorem 6.1.8]

(3.5) ∃µ > 0 s.t. c ∈ µ · ∂λmin(A(ω∗)) and λmin(A(ω∗)) = 0.

The latter condition is evident from Lemma 3.5. Additionally, there exists a subse-
quence {ω(kj)} of {ω(k)} such that {∇λmin(A(ω(kj)))} is convergent, because we have
assumed {ω(k)} is convergent and λmin(A(ω)) is the minimum of n continuously dif-
ferentiable functions. We have c/‖c‖ = limj→∞∇λmin(A(ω(kj)))/‖∇λmin(A(ω(kj)))‖
due to Theorem 3.6. Consequently,

µ̃c = lim
j→∞

∇λmin(A(ω(kj))) ∈ ∂λmin(A(ω∗)),

where µ̃ = (limj→∞ ‖∇λmin(A(ω(kj)))‖)/‖c‖. Thus, the former condition in (3.5) also
holds.
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4. A practical algorithm. In finite precision arithmetic, we terminate when
(cos θk − 1) and λmin(A(ω(k))) are less than specified tolerances in absolute value.
Termination occurs at smooth points due to rounding errors, and they satisfy the
optimality conditions (3.1) up to rounding errors, thanks to Lemma 3.5 and Theorem
3.6. Rarely it happens that this point does not correspond to a local maximizer. This
hurdle can be effectively overcome, and the algorithm can be made to converge to a
local maximizer by exploiting the following second order necessary condition for the
problem at hand.

Theorem 4.1. Suppose that ω∗ is a local maximizer of (1.1) such that λmin(A(ω∗))
is simple, and ∇λmin(A(ω∗)) 6= 0. Then (1) λmin(A(ω∗)) = 0, (2) c = µ∇λmin(A(ω∗))
for some µ > 0, and (3) V T∇2λmin(A(ω∗))V � 0, where V ∈ Cd×(d−1) is a matrix
whose columns form an orthonormal basis for the subspace orthogonal to c.

Once termination at a point ω(k) satisfying (3.1) occurs up to rounding errors,
we check whether the projected Hessian HV,k := V T∇2λmin(A(ω(k)))V is positive
semidefinite. Here we disregard the highly unlikely possibility of a singular HV,k.

If HV,k is positive definite, we terminate with ω(k) as a local maximizer due to the
second order sufficient conditions, i.e., conditions (1)–(2) of Theorem 4.1 together
with V T∇2λmin(A(ω∗))V � 0 guarantee that ω∗ is a local maximizer. Otherwise, if
HV,k has a negative eigenvalue, then ω(k) does not correspond to a local maximizer
by Theorem 4.1; indeed the direction p = V v− is a descent direction for λmin(A(ω))
at ω(k), where v− is an eigenvector corresponding to any negative eigenvalue of HV,k.

For all α ∈ R small in absolute value, we have λmin(A(ω(k) +αp)) < 0. Thus, for such
an α, the point ω(k) + αp is feasible with respect to (1.1), yet first order optimality
conditions (3.1) are violated at ω(k) + αp. We restart the algorithm with the point
ω(k) + αp. Due to part (ii) of Theorem 3.2, this point is not a local maximizer of the
new subproblem

maximize cTω subject to

λmin(A(ω(k) + αp)) +∇λmin(A(ω(k) + αp))T (ω − (ω(k) + αp)) +
γ

2
‖ω − (ω(k) + αp)‖2 ≤ 0.

Thus, the algorithm terminates at another point ω̂(k̂), where again the first order

optimality condition (3.1) holds up to rounding errors, and such that cT ω̂(k̂) >
cT (ω(k) + αp) = cTω(k). (The last equality is due to the orthogonality of c to the
column space of V where p lies.) These remarks are summarized in Algorithm 1
below.

The progress of this practical algorithm is illustrated in Figure 1 on an example
where a restart is applied. In the figure, the curves represent the boundary of the
feasible set F ⊂ R2. Here the rightmost point in F is sought, so c = (1, 0). When the
algorithm is started with x0 = (0, 0), it initially converges to a point ω∗ where the
first order optimality condition (3.1) holds. This is not a local maximizer; indeed the
projected Hessian is the scalar −1.0368. Thus the algorithm is restarted by moving
from ω∗ vertically in the direction indicated by the dashed line segment in the figure.
After this restart, the algorithm converges to the rightmost point in F , which is
marked by the magenta disk.

5. A fixed point view: rate of convergence. In this section, under the
assumption that {ω(k)} itself converges to a smooth local maximizer ω∗, we de-
duce a linear rate of convergence revealing also the factors affecting the speed of
convergence. Throughout the section we use the shorthand λ∗ := λmin(A(ω∗)),
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Algorithm 1. Support function based constrained eigenvalue optimization.

Require: An analytic and Hermitian matrix-valued function A : Rd → Cn×n, a
vector c ∈ Rd, and tolerances ε1, ε2 ∈ R+ for termination

1: V ∈ Rd×(d−1) ← a matrix whose set of columns forms an orthonormal basis for
the subspace of Rd orthogonal to c

2: Pick an arbitrary ω(0) ∈ Rd feasible with respect to (1.1); k ← 0
3: Repeat
4: loop

5: While
∣∣∣ cT∇λmin(A(ω(k)))
‖c‖‖∇λmin(A(ω(k)))‖ − 1

∣∣∣ > ε1 or |λmin(A(ω(k)))| > ε2 do

6: loop
7: ω(k+1) is given by the update rule (2.9); k ← k + 1
8: end loop
9: HV ← V T∇2λmin(A(ω(k)))V

10: if λmin(HV ) < 0 then
11: vn ← a unit eigenvector corresponding to λmin(HV ); p← V vn
12: α← 1
13: While λmin(A(ω(k) + αp)) > 0 do
14: loop
15: α← α/2
16: end loop
17: ω(k) ← ω(k) + αp
18: end if
19: end loop
20: Until λmin(HV ) > 0
21: Output: ω(k).

∇λ∗ := ∇λmin(A(ω∗)), and ∇2λ∗ := ∇2λmin(A(ω∗)), respectively. As we shall see,
the rate of convergence depends on the eigenvalue distribution of the projected Hessian

HV := V T ∇2λ∗ V,

where V ∈ Rd×d−1 is an isometry with columns formed by an orthonormal basis for
the subspace orthogonal to ∇λ∗. In particular, the convergence is faster when the
eigenvalues of HV are closer to γ. In the extreme case, when HV = γI, the rate of
convergence becomes superlinear.

We will put a fixed point theory in use: it follows from (2.9) that the sequence
{ω(k)} is a fixed point sequence ω(k+1) = f(ω(k)) where

(5.1) f(ω) := ω +
1

γ

[√
‖∇λmin(A(ω))‖2 − 2γλmin(A(ω))

‖c‖
· c−∇λmin(A(ω))

]
.

It is straightforward to verify that any fixed point of f(ω) satisfies the first order
optimality conditions (parts (1) and (2) of Theorem 4.1), or otherwise ∇λmin(A(ω))
vanishes at the fixed point. Furthermore, the Jacobian of f(ω) given by

J(ω) = I +
1

γ

[
c · ∇λmin(A(ω))T (∇2λmin(A(ω))− γI)

‖c‖
√
‖∇λmin(A(ω))‖2 − 2γλmin(A(ω))

−∇2λmin(A(ω))

]
for ω close to ω∗ determines the rate of convergence.
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Fig. 1. Progress of Algorithm 1 on an example. The initial iterates of the algorithm (red
triangles) converge to a point ω∗ satisfying the first order optimality conditions that is not a local
maximizer. Then step p indicated by the dashed line segment is taken. The algorithm restarted
with ω∗ + p generates a sequence (blue asterisks) converging to a local maximizer marked with the
magenta disk.

At the local maximizer ω∗, due to parts (1) and (2) of Theorem 4.1, we must have
λ∗ = 0 and c/‖c‖ = ∇λ∗/‖∇λ∗‖. Thus, simple calculations yield

(5.2) J(ω∗) =

[
I − ∇λ∗ · ∇λ

T
∗

‖∇λ∗‖2

] [
I − 1

γ
∇2λ∗

]
= (V V T )

[
I − 1

γ
∇2λ∗

]
.

We investigate the norm and the eigenvalue distribution of the projected Jacobian

(5.3) V TJ(ω∗)V = I − 1

γ
V T∇2λ∗V =

1

γ
(γI −HV )
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acting on Col(V ) (the column space of V ) in order to draw conclusions about the
rate of convergence of the algorithm. In what follows, ‖A‖2 := maxx∈Fn,‖x‖=1 ‖Ax‖2
denotes the 2-norm of a matrix A ∈ Fn×n with real entries (F = R) or complex entries
(F = C).

Lemma 5.1. Suppose S ∈ Rk×k is a symmetric positive semidefinite matrix such
that ‖S‖2 ≤ 1. Then I − S is positive semidefinite and ‖I − S‖2 ≤ 1. Furthermore,
if S is positive definite, then ‖I − S‖2 < 1.

Proof. Since S is symmetric positive semidefinite and ‖S‖2 ≤ 1, each eigenvalue
of S lies in [0, 1]. This in turn implies that each eigenvalue of I − S belongs to [0, 1].
Consequently, I − S is positive semidefinite and ‖I − S‖2 ≤ 1.

Additionally, if S is positive definite, each eigenvalue of S lies in (0, 1], meaning
that the eigenvalues of I − S belong to [0, 1). Consequently, ‖I − S‖2 < 1.

Theorem 5.2. Let ω∗ be a local maximizer of (1.1) such that λ∗ is simple, and
∇λ∗ 6= 0. Then V TJ(ω∗)V is positive semidefinite and ‖V TJ(ω∗)V ‖2 ≤ 1. Addition-
ally, if HV � 0, then ‖V TJ(ω∗)V ‖2 < 1.

Proof. Observe that HV � 0 due to part (3) of Theorem 4.1 and ‖HV ‖2 ≤ γ due
to (2.1). Now the assertion immediately follows from (5.3) and Lemma 5.1 by letting
S = (1/γ)V T∇2λ∗V = (1/γ)HV .

We note that most often HV is not only positive semidefinite but also positive
definite amounting to the satisfaction of the sufficient conditions for the optimality of
ω∗. Thus typically ‖V TJ(ω∗)V ‖2 < 1.

Our interest in the Jacobian and its projected variant at ω∗ stem from (ω(k+1) −
ω∗) ≈ J(ω∗)(ω

(k) − ω∗) for large k, which can be deduced from the mean value
theorem by exploiting ω(k+1) − ω∗ = f(ω(k)) − f(ω∗). Remarkably, the projected
Jacobian V TJ(ω∗)V assumes the role of J(ω∗) for large k in this identity, as it turns
out ω(k) − ω∗ lies almost on Col(V ) for such k and has very little component in the
direction of u := ∇λ∗/‖∇λ∗‖. This in turn leads to the conclusion that the rate of
convergence is typically linear and depends on the singular values, equivalently the
eigenvalues, of V TJ(ω∗)V = (1/γ)(γI − HV ). Next, these assertions are presented
formally and proven.

Theorem 5.3 (rate of convergence). Suppose that {ω(k)} converges to a local
maximizer ω∗, λ∗ is simple, and ∇λ∗ 6= 0. Either

(5.4) lim inf
k→∞

‖ω(k+1) − ω∗‖
‖ω(k) − ω∗‖

= 0

or otherwise both of the following hold:
(i) uT (ω(k)−ω∗)/‖ω(k)−ω∗‖ → 0, ‖V T (ω(k)−ω∗)‖/‖ω(k)−ω∗‖ → 1, as k →∞.

(ii) For each µ1, µ2 ∈ R+ satisfying

µ1 < (1/γ)σmin(γI −HV ) and µ2 > (1/γ)‖γI −HV ‖2,

there exists an integer K such that for all k > K we have

(5.5) µ1 ≤
‖ω(k+1) − ω∗‖
‖ω(k) − ω∗‖

≤ µ2 ,

where σmin(·) denotes the smallest singular value of its matrix argument.
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Proof. Letting pk = ω(k) − ω∗, we have

pk+1 = ω(k+1) − ω∗ = f(ω(k))− f(ω∗) = Jk · pk, where Jk =


∇f1(ω∗ + η1pk)T

∇f2(ω∗ + η2pk)T

...
∇fd(ω∗ + ηdpk)T


(5.6)

for some η1, . . . , ηd ∈ (0, 1) by the mean value theorem. Above fj(ω) denotes the jth
component of f(ω). This recurrence can be rearranged as

pk+1 = J(ω∗)pk + [Jk − J(ω∗)]pk

= (V V T )

[
I − 1

γ
∇2λ∗

]
pk + [Jk − J(ω∗)]pk.

(5.7)

Let us assume that

(5.8) lim inf
k→∞

‖ω(k+1) − ω∗‖
‖ω(k) − ω∗‖

6= 0.

Multiplying both sides of (5.7) by uT from the left and taking the absolute value lead
us to

|uT pk+1| = |uT [Jk−J(ω∗)]pk| =⇒ lim
k→∞

|uT pk+1|
‖pk‖

= lim
k→∞

∣∣∣∣uT [Jk − J(ω∗)]
pk
‖pk‖

∣∣∣∣ = 0.

Furthermore, due to assumption (5.8), there exists a real scalar m′ > 0 and an integer
K ′ such that

m′ <
‖pk+1‖
‖pk‖

=

√
‖V T pk+1‖2 + |uT pk+1|2

‖pk‖
∀k > K ′.

Since uT pk+1/‖pk‖ → 0 as k →∞, this in turn implies the existence of a real scalar
m′′ > 0 and an integer K ′′ such that

m′′ <
‖V T pk+1‖
‖pk‖

∀k > K ′′.

Consequently, we obtain

(5.9) lim
k→∞

(
|uT pk+1|
‖pk‖

)
/

(
‖V T pk+1‖
‖pk‖

)
= lim
k→∞

|uT pk+1|
‖V T pk+1‖

= 0.

Moreover, by taking the limit of

1 =

√
(uT pk)2 + ‖V T pk‖2

‖pk‖
=
‖V T pk‖
‖pk‖

√
1 +

(uT pk)2

‖V T pk‖2

and exploiting (5.9), we deduce

lim
k→∞

‖V T pk‖
‖pk‖

= 1 and lim
k→∞

uT pk
‖pk‖

= 0

as desired.
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To prove (5.5), we rewrite recurrence (5.7) in the following form:

pk+1

‖pk‖
= V V T

[
I− 1

γ
∇2λ∗

]
V V T

pk
‖pk‖

+ V V T
[
I− 1

γ
∇2λ∗

]
uuT

pk
‖pk‖

+ [Jk − J(ω∗)]
pk
‖pk‖

.

(5.10)

The last two terms on the right vanish as k → ∞, so they can be made arbitrarily
close to 0 by choosing k large enough. Furthermore, since the norm of V T pk/‖pk‖
approaches 1 in the limit, by choosing k large enough, the first term on the right can
be made to lie in any interval

[µ′1, µ
′
2] ⊃

[
σmin

(
V V T

[
I − 1

γ
∇2λ∗

]
V

)
,

∥∥∥∥V V T [I − 1

γ
∇2λ∗

]
V

∥∥∥∥
2

]
= [(1/γ)σmin(γI −HV ), (1/γ)‖γI −HV ‖2] .

Note that the singular values of V T [I−(1/γ)∇2λ∗]V = (1/γ)(γI−HV ) are not affected
by left-multiplication with V . This is because this left-multiplication corresponds to
merely a change of basis. Consequently, assertion (ii) follows.

Remark 5.4. It is apparent from recurrence (5.7) that the condition lim infk→∞
‖ω(k+1) −ω∗‖/‖ω(k) −ω∗‖ = 0 holds if and only if there exists a subsequence {ω(kj)}
of {ω(k)} such that either

(i) limj→∞ span
{

(ω(kj) − ω∗)/‖ω(kj) − ω∗‖
}
⊆ Null

(
I − (1/γ)∇2λ∗

)
, or

(ii) limj→∞ span
{[
I − (1/γ)∇2λ∗

]
(ω(kj) − ω∗)/‖ω(kj) − ω∗‖

}
= span{∇λ∗}.

6. Estimation of an upper bound on second derivatives. The practicality
of the algorithm presented and analyzed relies on the availability of an upper bound
γ satisfying (2.1). The next result is helpful in determining such a γ analytically. An
analogous result was proven in [19, Theorem 6.1] for the Hessian of a weighted sum
of the j largest eigenvalues.

Theorem 6.1. Let A(ω) : Rd → Cn×n be a Hermitian and analytic matrix-valued
function. Then

λmax

[
∇2λmin(A(ω))

]
≤ λmax

(
∇2A(ω)

)
for all ω ∈ Rd such that λmin(A(ω)) is simple, where

∇2A(ω) :=


∂2A(ω)
∂ω2

1

∂2A(ω)
∂ω1∂ω2

. . . ∂2A(ω)
∂ω1∂ωd

∂2A(ω)
∂ω2∂ω1

∂2A(ω)
∂ω2

2
. . . ∂2A(ω)

∂ω2∂ωd

...
...

...
∂2A(ω)
∂ωd∂ω1

∂2A(ω)
∂ωd∂ω2

. . . ∂2A(ω)
∂ω2

d

 .

Proof. By Theorem 2.1 part (iv), we have

∇2λmin(A(ω)) = Hn(ω) + 2

n−1∑
m=1

1

λmin(A(ω))− λm(ω)
< (Hn,m(ω)) ,

where the entries of Hn(ω) and Hn,m(ω) at position (k, `) are given by

v∗n(ω)
∂2A(ω)

∂ωk ∂ω`
vn(ω) and

(
vn(ω)∗

∂A(ω)

∂ωk
vm(ω)

)(
vm(ω)∗

∂A(ω)

∂ω`
vn(ω)

)
,
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respectively. It is straightforward to verify that Hn,m(ω) is positive semidefinite, since
for each u ∈ Cd we have

u∗Hn,m(ω)u =

∣∣∣∣∣
d∑
`=1

h
(n,m)
` u`

∣∣∣∣∣
2

≥ 0, where h
(n,m)
` = vm(ω)∗

∂A(ω)

∂ω`
vn(ω).

This implies that < (Hn,m(ω)) is also positive semidefinite due to uT< (Hn,m(ω))u =
uTHn,m(ω)u ≥ 0 for each u ∈ Rd. Thus we deduce

λmax

[
∇2λmin(A(ω))

]
≤ λmax(Hn(ω)) ≤ λmax(∇2A(ω)).

Denoting the Kronecker product with ⊗, the last inequality above follows from Hn(ω)
= [Id ⊗ v∗n(ω)]∇2A(ω)[Id ⊗ vn(ω)] and the observation that there exists a unit vector
v ∈ Cd satisfying

λmax(Hn(ω)) = v∗Hn(ω)v = [v∗ ⊗ v∗n(ω)]∇2A(ω) [v ⊗ vn(ω)] ≤ λmax(∇2A(ω)).

7. Case study: pseudospectral functions.
Pseudospectral abscissa. The ε-pseudospectrum of a matrix A ∈ Cn×n is the

subset of the complex plane consisting of the eigenvalues of all matrices within an
ε-neighborhood of A, formally defined by1

Λε(A) :=
⋃

‖∆‖2≤ε

Λ(A+ ∆),

with the singular value characterization [23]

(7.1) Λε(A) = {z ∈ C | σmin(A− zI) ≤ ε}.

The rightmost point in this set αε(A) is called the ε-pseudospectral abscissa and
is an indicator of the transient behavior of the dynamical system x′(t) = Ax(t).
Specifically, a large αε(A) relative to ε indicates that ‖x(t)‖ exhibits growth for some
initial condition, even if the system is asymptotically stable, as implied by the Kreiss
matrix theorem for matrix exponentials [23, Theorem 18.5].

Globally and locally convergent algorithms for αε(A) have been suggested in [5]
and [10], respectively. Algorithm 1 can also be employed for the computation of αε(A),
since αε(A) can be cast as the optimization problem

maximizeω∈R2 ω1 subject to λmin(A(ω)) ≤ 0,

A(ω) := [A− (ω1 + iω2)I]
∗

[A− (ω1 + iω2)I]− ε2I

that fits into framework (1.1). It follows from the expressions in part (iv) of Lemma
2.1 that

∇λmin(A(ω)) = ( vn(ω)∗(−A−A∗ + 2ω1I)vn(ω), vn(ω)∗(iA− iA∗ + 2ω2I)vn(ω) ) .

Furthermore, the matrix ∇2A(ω) in Theorem 6.1 is given by

∇2A(ω) =

 ∂A2(ω)
∂ω2

1

∂A2(ω)
∂ω1∂ω2

∂A2(ω)
∂ω2∂ω1

∂A2(ω)
∂ω2

2

 = 2I.

Consequently, λmax

[
∇2λmin(A(ω))

]
≤ γ := 2 for all ω such that λmin(A(ω)) is simple.

1This definition is in terms of the matrix 2-norm. It could be defined in terms of other matrix
norms. But the singular value characterization would not be valid anymore. The ε-pseudospectrum
we consider here in terms of the matrix 2-norm is the one most widely used.
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Fig. 2. The progress of the algorithm to compute the rightmost, leftmost, and outermost points
in Λε(A) is illustrated for a random 10 × 10 matrix and ε = 1. The orange curve represents
the boundary of Λε(A), while the red disks, blue asterisks, and green crosses mark the iterates of
the algorithm to compute the rightmost, leftmost, and outermost points in Λε(A). The real part of the
rightmost and the modulus of the outermost points correspond to αε(A) and ρε(A), respectively.

We illustrate Algorithm 1 on a 10× 10 random matrix with entries selected from
a normal distribution with zero mean and unit variance. We compute the real parts
of both the rightmost point and the leftmost point in Λε(A) for ε = 1. Initially, ω(0)

is chosen as the rightmost eigenvalue. The iterates for the rightmost and leftmost
points are depicted in Figure 2 with red disks and blue asterisks, respectively. The
algorithm requires 39 iterations to compute these extreme points accurate up to 12
decimal digits. In Figure 3, on the left the later iterates of the algorithm for the
rightmost point are shown. At the later iterations, the directions (ω(k) − ω∗) become
more or less orthogonal to ∇λmin(A(ω∗)), equivalently, tangent to the boundary of
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Fig. 3. Left: A closer look at the iterates (red disks) for the rightmost point in Λε(A); the
blue circle marks the rightmost point computed by the highly accurate algorithm in [5]. Right: Later
iterates (green crosses) for the outermost point in Λε(A); the blue circle marks the outermost point
computed by the algorithm in [18].

Table 1
The errors ‖ω(k) − ω∗‖ for various k to compute the rightmost point in Λε(A), rounded to 12

decimal digits, are listed for the random matrix example and ε = 1.

k 29 30 31 32 33

‖ω(k) − ω∗‖ 1.041 · 10−9 5.27 · 10−10 2.67 · 10−10 1.35 · 10−10 6.9 · 10−11

Λε(A), as suggested by assertion (i) of Theorem 5.3. As for the rate of convergence,
the errors ‖ω(k) − ω∗‖ involved in computing the rightmost point at later iterations
listed in Table 1 indicate a linear convergence. The projected Hessian reduces to the

scalar HV = ∂2λmin(A(ω∗))
∂ω2

2
, so assertion (ii) of Theorem 5.3 implies

lim
k→∞

‖ω(k+1) − ω∗‖
‖ω(k) − ω∗‖

=

∣∣∣∣1− 1

γ
HV
∣∣∣∣ =

∣∣∣∣1− 1

2

∂2λmin(A(ω∗))

∂ω2
2

∣∣∣∣ .
For the particular 10×10 example, the ratio above is 0.506 (rounded to three decimal
digits). This ratio of decay in the error is confirmed in practice by Table 1.

This application of the algorithm here to the pseudospectral abscissa and the al-
gorithm in [10] both generate sequences converging locally at a linear rate. However,
the algorithm here is based on the computation of smallest singular values repeat-
edly. On the other hand, the algorithm in [10] requires the computation of rightmost
eigenvalues, which is typically less reliable than the computation of smallest singular
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values. The algorithm in [5] is globally convergent. But it is considerably less efficient
compared to the algorithms here and in [10], as it requires the computation of all
eigenvalues of Hamiltonian matrices of twice the size of the original problem.

Pseudospectral radius. The modulus of the outermost point ρε(A) in the ε-
pseudospectrum Λε(A) is called the ε-pseudospectral radius [23]. This quantity is
associated with the transient behavior of the discrete dynamical system xk+1 = Axk,
as implied by the Kreiss matrix theorem for matrix powers [23, Theorem 18.1].

When Λε(A) is defined in terms of the matrix 2-norm and using the singular value
characterization (7.1), we deduce

ρε(A) = maximizeω∈R2 ω1 subject to λmin(A(ω)) ≤ 0,

A(ω) :=
(
A− ω1e

iω2I
)∗ (

A− ω1e
iω2I

)
− ε2I.

(7.2)

Now the expressions for the first derivatives take the form

∇λmin(A(ω)) =
(
vn(ω)∗(−2<(e−iω2A)+2ω1I)vn(ω), vn(ω)∗(−2=(ω1e

−iω2A))vn(ω)
)
,

whereas

∇2A(ω) =

[
2I −2=(e−iω2A)

−2=(e−iω2A) 2<(ω1e
−iω2A)

]
.

Since ρε(A) ≤ ‖A‖2 + ε, for all feasible ω we have ω1 ≤ ‖A‖2 + ε. Thus, Gershgorin’s
theorem [12, Theorem 6.1.1] applied to ∇2A(ω), combined with Theorem 6.1, yields

λmax

[
∇2λmin(A(ω))

]
≤ γ := max

(
2 + 2‖A‖2, 2ε‖A‖2 + 2‖A‖22 + 2‖A‖2

)
for all ω ∈ B(0, ‖A‖2 + ε) such that λmin (A(ω)) is simple. Here, we benefit from
the fact that qk(ω) for each k is a support function on the ball B(0, ‖A‖2 + ε), which
contains the feasible set F (see the note after Theorem 2.2).

We apply Algorithm 1 to compute ρε(A) starting with ω(0) set equal to the eigen-
value with the largest modulus. In Figure 2, the green crosses mark the iterates of
the algorithm on the 10× 10 random matrix of the previous part and for ε = 1. The
directions (ω(k)−ω∗) for the later iterates ω(k), as illustrated on the right in Figure 3,
again become tangent to the boundary of Λε(A), which is in harmony with assertion
(i) of Theorem 5.3. For the rate of convergence, by assertion (ii) of Theorem 5.3, we
have

lim
k→∞

‖ω(k+1) − ω∗‖
‖ω(k) − ω∗‖

=

∣∣∣∣1− 1

γ

∂2λmin(A(ω∗))

∂ω2
2

∣∣∣∣
for the matrix-valued function A(ω) in (7.2). This quantity is equal to 0.791 (rounded
to three decimal digits) for the particular example. This is confirmed by Table 2, as it
indicates a linear convergence with the ratio of two consecutive errors roughly equal
to 0.791.

Table 2
The errors ‖ω(k) − ω∗‖ for various k to compute the outermost point in Λε(A) are listed for

the random matrix example and ε = 1.

k 41 42 43 44 45

‖ω(k) − ω∗‖ 1.105× 10−7 8.742 · 10−8 6.918 · 10−8 5.474 · 10−8 4.332 · 10−8
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8. Variations. We consider the following variations of the main framework:

maximize cTω subject to λmax(A(ω)) ≤ 0, and(8.1)

maximize cTω subject to λmin(A(ω)) ≥ 0.(8.2)

The family of convex as well as nonconvex semidefinite programs are closely related to
these frameworks. More specific applications include certain robust stability problems
in control theory which can be addressed within the first framework, and structural
design problems (where a smallest eigenvalue corresponding to the buckling load of
the structure [9] is required to be bounded below) that are relevant to the second
framework. Indeed, each one of these frameworks can be turned into the other, as the
conditions λmin(A(ω)) ≥ 0 and λmax(−A(ω)) ≤ 0 are equivalent. Algorithm 1 defined
in terms of λmax(·) rather than λmin(·) usually works well in practice in our experience.

Letting λ̂k := λmax(A(ω(k))) and ∇λ̂k := ∇λmax(A(ω(k))), this is explained by the
property

(8.3) λmax(A(ω)) ≤ q̂k(ω) := λ̂k +∇λ̂Tk (ω − ω(k)) +
γ

2
‖ω − ω(k)‖2 ∀ω ∈ Rd

that seems to hold for large γ.
We illustrate the algorithm for (8.1) and (8.2) on two examples. In both of these

examples, we set γ = 100 in (8.3) and ε1 = ε2 = 10−6 in Algorithm 1. The first one
concerns the stabilization of a linear control system by output feedback, that is, for a
given system

x′(t) = Ax(t) +Bu(t), y(t) = Cx(t),

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n determination of a matrix K ∈ Cm×p, con-
sequently an output feedback u(t) = Ky(t), such that the system is asymptotically
stable. This could equivalently be expressed as the determination of a matrix K such
that A + BKC has all of its eigenvalues on the left half of the complex plane. This
problem has drawn substantial interest since the 1970s; for instance, derivation of
algorithms and simple mathematical characterizations to check the existence of sta-
bilizing output feedbacks have been referred to as major open problems in the survey
paper [2]. We refer to [22] and references therein for recent developments regard-
ing output feedback stabilization. Here we focus on the case when A is Hermitian,
C = B∗, and K = K(ω) =

∑κ
j=1 ωjKj , where Kj is a given Hermitian matrix and

ωj ∈ R is a parameter for j = 1, . . . , κ. We assume that the system is stabilizable by
output feedback for certain values of parameters ω1, . . . , ωκ and aim for a robustly
stable system that is as close to the original system as possible in a certain sense.
Formally, we would like to solve

(8.4) minimize

κ∑
j=1

ωj‖Kj‖2 subject to λmax(A+BK(ω)B∗) ≤ −δ

for a given δ > 0 over the parameters ω ∈ Rκ. This falls into the scope of framework
(8.1). In Figure 4 on the top, the progress of the algorithm is shown for such an
example with two parameters (i.e., κ = 2), δ = 0.1, A ∈ C20×20, B ∈ C20×10,
and K1,K2 ∈ C10×10 are random matrices.2 The curves represent the level sets
of λmax(A + BK(ω)B∗), in particular the rightmost curve represents the −0.1 level
set. The algorithm started from ω(0) = (11, 11) requires 546 iterations to converge

2The matrices are available at http://home.ku.edu.tr/∼emengi/software/robustcontrol.mat.

http://home.ku.edu.tr/~emengi/software/robustcontrol.mat.
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Fig. 4. Illustration of the algorithm for the solutions of (8.4), (8.5). In each figure, the curves
represent the level sets of the associated eigenvalue function. On the top, the rightmost curve
corresponds to the −0.1 level set. At the bottom, the curve to which the dashed line is tangent
corresponds to the 0.1 level set. The blue crosses are the iterates generated by the algorithm, whereas
the red asterisks are the converged minimizer ω∗ up to tolerances. The dashed line represents
{ω | cTω = cTω∗} for c = [‖K1‖2 ‖K2‖2]T on the top and for c = [1 1]T at the bottom. In
each case, this line is tangent to the boundary of a level set at ω∗, specifically, −0.1 level set of the
eigenvalue function on the top and 0.1 level set of the eigenvalue function at the bottom.
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to ω∗ = (3.1431, 5.9440) (marked by the red asterisk in the figure). This converged
point ω∗ is a local minimizer up to tolerances, as indeed λmax(A + BK(ω∗)B

∗) =
−0.10000002 and

∣∣cT∇λmax(A(ω∗))/(‖c‖‖∇λmax(A(ω∗))‖)− 1
∣∣ = 9.96 · 10−7 for c =[

‖K1‖2 ‖K2‖2
]T

. Convergence behavior similar to the pseudospectral functions

is observed here. For instance, it is clear from the figure that (ω(k)−ω∗)/‖ω(k)−ω∗‖
becomes tangent to the boundary of the feasible set in the limit.

The second example concerns

(8.5) minimize

κ∑
j=1

ωj subject to λmin(A(ω)) ≥ β

for a given β > 0. This problem can be interpreted as the minimization of the vol-
ume of a column subject to a constraint on its buckling load. It may be desirable to
include other (typically linear and bilinear) constraints in addition to the eigenvalue
constraint and impose the smallest eigenvalue constraint in terms of a generalized
eigenvalue problem as in [1]. Here, we employ this simplified formulation, but in terms
of a bilinear matrix-valued function A(ω) :=

∑κ
j=1

∑κ
k=1 ωjωkAjk+

∑κ
j=1 ωjAj +A0,

which makes the problem nonconvex. We consider the problem with respect to two
parameters (i.e., κ = 2), β = 0.1 and A0, A1, A2, A12 ∈ C20×20, that are random
Hermitian.3 An illustration of the algorithm is given at the bottom in Figure 4.
The curves represent the level sets of λmin(A(ω)), in particular the innermost red
curve represents the 0.1 level set. The algorithm initiated with ω(0) = (10, 15) ter-
minates at ω∗ = (1.9963, 1.0400) after 60 iterations. It can be verified that this
point is a local minimizer up to tolerances, indeed λmin(A(ω∗)) = 0.1000008 and∣∣(cT∇λmin(A(ω∗)))/(‖c‖‖∇λmin(A(ω∗))‖)− 1

∣∣ = 8.91 · 10−8, where c =
[

1 1
]T

.

9. Conclusion. Various applications give rise to problems that involve opti-
mization of a linear objective function subject to minimum eigenvalue constraints,
or optimization problems of similar spirit, such as the calculation of the pseudospec-
tral functions, shape optimization problems in structural design, and robust stability
problems in control theory. We explored support function based approaches that con-
struct global overestimators for the eigenvalue function appearing in the constraint.
The global overestimators are quadratic functions and utilize derivatives. They lead
to a linearly convergent algorithm robust against the nonsmooth nature of smallest
eigenvalue functions. We established a local convergence result regardless of the mul-
tiplicity of the eigenvalue at the optimal points. Thus, the algorithm is immune to
nonsmoothness at the optimal points and at nearby points. The rate of the conver-
gence of the algorithm is also analyzed, leading us to a fine understanding of the factor
affecting the rate of convergence, basically the eigenvalue distribution of a projected
Hessian matrix. A MATLAB implementation of this algorithm is available on the
web.4

Efficient extensions of the algorithm when there are multiple smallest eigen-
value constraints, possibly mixed with quadratic constraints, may be worth exploring.
When the linear objective function is replaced by a convex objective function, the al-
gorithm seems applicable, but the convex and smooth subproblems need to be solved
numerically, for instance, via an interior point method. Convergence and rate of con-
vergence analyses in these more general settings may be intricate and worth studying.

3The matrices are available at http://home.ku.edu.tr/∼emengi/software/structuredesign
bilinear.mat.

4http://home.ku.edu.tr/∼emengi/software/eigoptc.html.

http://home.ku.edu.tr/~emengi/software/structuredesign_bilinear.mat.
http://home.ku.edu.tr/~emengi/software/structuredesign_bilinear.mat.
http://home.ku.edu.tr/~emengi/software/eigoptc.html
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