Math 106: Calculus

Final - Fall 2009
Duration : 180 minutes

NAME

Student ID

Signature

$\# 1$	10	
$\# 2$	10	
$\# 3$	15	
$\# 4$	10	
$\# 5$	10	
$\# 6$	10	
$\# 7$	15	
$\# 8$	10	
$\# 9$	10	
Σ	100	

- Put your name, student ID and signature in the boxes above.
- No calculators or any other electronic devices are allowed.
- This is a closed-book and closed-notes exam.
- Show all of your work; full credit will not be given for unsupported answers.
- Write your solutions clearly; no credit will be given for unreadable solutions.
- Mark your section below.

Section 1 (Sultan Erdoğan Demir, MW 11:30-13:20)
Section 2 (Sultan Erdoğan Demir, MW 14:30-16:20)
Section 3 (Emre Mengi, MW 9:30-11:20)
Section 4 (Emre Mengi, MW 14:30-16:20)
Section 5 (Kazim Büyükboduk, TuTh 11:30-13:20)
Section 6 (Kazim Büyükboduk, TuTh 14:30-16:20)

Question 1. Determine whether each of the following series is convergent or divergent. Explain your answer fully.
(a) $\sum_{n=2}^{\infty}(-1)^{n} \frac{\sqrt[3]{n}}{\ln n}$
(b) $\sum_{n=1}^{\infty} \frac{\cos \sqrt{n}}{n^{3}}$
(c) $\sum_{n=1}^{\infty} \sin \left(\frac{\pi}{n^{3}}\right)$

Question 2. In (a) and (b) below, find the indicated area or volume by first expressing it as a definite integral, and then evaluating the definite integral.
(a) The area of the region between $x=y^{2}-6 y$ and $x=4 y-y^{2}$.
(b) The volume obtained by rotating the equilateral triangle shown in the figure below about the y-axis.
(Remark: The equilateral triangle lies above the x -axis except its base which lies on the x-axis. Each side of the equilateral triangle is of length 1 . The left-most corner of the equilateral triangle has coordinates $(4,0)$.)

Question 3.

(a) Evaluate the limit $\lim _{x \rightarrow 0} \frac{x \cdot \int_{0}^{x} \tan \left(t^{2}\right) d t}{\sin \left(x^{2}\right)}$.
(b) Find the function defined by

$$
F(t)=\int_{\sqrt{t}}^{t} \frac{d}{d x}\left(e^{x^{2 x}}\right) d x
$$

for all $t \geq 0$. Your answer should not involve an integral nor a derivative.
(c) Find the function defined by

$$
G(t)=\frac{d}{d t}\left(\int_{\sqrt{t}}^{t} e^{x^{2 x}} d x\right)
$$

for all $t>0$. Your answer should not involve an integral or a derivative.

Question 4. Prove that the polynomial $P(x)=x^{3}+2 x+3$ has exactly one root in $(-\infty, \infty)$.

Question 5.

(a) Estimate the integral

$$
\int_{0}^{4} 3^{\sqrt{x}} d x
$$

using a right-sum (i.e., the heights of the rectangles are given by the values of the function at the right end-points) with $n=4$ rectangles of width $\Delta x=1$. Is your estimate an upper bound or a lower bound for the exact integral? Explain.
(b) Evaluate the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\left(1+\frac{i}{n}\right) \ln \left(1+\frac{i}{n}\right)}{n}
$$

by interpreting it as a definite integral and then calculating the value of the integral.

Question 6. Compute the following integrals. Show all your reasoning clearly.
(a) $\int_{0}^{\pi / 2} \sin ^{4}(x) \cos ^{3}(x) d x$
(b) $\int \frac{1}{x^{2} \sqrt{36-x^{2}}} d x$

Question 7.

(a) Find the Taylor series $T(x)$ for $\cos x$ centered at $\pi / 3$.
(b) Show that the Taylor series $T(x)$ that you determined in part (a) satisfies $\cos x=T(x)$ for all $x \in(-\infty, \infty)$.

Question 8.
(a) Find the radius and the interval of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{(x+3)^{n}}{2^{n}(n+1)}
$$

(b) Newton discovered that

$$
\frac{1}{\sqrt{1-x^{2}}}=\sum_{n=0}^{\infty} \frac{(2 n)!}{4^{n}(n!)^{2}} x^{n}
$$

$$
\text { for }-1<x<1 \text {. }
$$

(i) Using this formula, find a power series expansion for $\arcsin x$.
(ii) Use your power series from part (i) with $x=1 / \sqrt{2}$ to find a power series whose sum is π.

Question 9. Determine whether the following improper integrals are convergent or divergent. Evaluate them when they are convergent. Show all your reasoning.
(a) $\int_{1}^{\infty} \frac{1}{(x+2)(x+3)(x+4)} d x$
(b) $\int_{-1}^{1} \frac{1}{x^{4 / 3}} d x$

