Math 106: Calculus

Midterm 2 - Fall 2009
Duration : 90 minutes

Name

Student ID

Signature
\qquad
\qquad
\qquad

$\# 1$	20	
$\# 2$	15	
$\# 3$	20	
$\# 4$	15	
$\# 5$	15	
$\# 6$	15	
Σ	100	

- Put your name, student ID and signature in the boxes above.
- No calculators or any other electronic devices are allowed.
- This is a closed-book and closed-notes exam.
- Show all of your work; full credit will not be given for unsupported answers.
- Write your solutions clearly; no credit will be given for unreadable solutions.
- Mark your section below.

Section 1 (Sultan Erdoğan Demir, MW 11:30-13:20)
Section 2 (Sultan Erdoğan Demir, MW 14:30-16:20) \qquad
Section 3 (Emre Mengi, MW 9:30-11:20) \qquad
Section 4 (Emre Mengi, MW 14:30-16:20) \qquad
Section 5 (Kazim Büyükboduk, TuTh 11:30-13:20) \qquad
Section 6 (Kazim Büyükboduk, TuTh 14:30-16:20)

Question 1. Evaluate the limit in each part. Show the details of your work.
(a) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}$
(b) $\lim _{x \rightarrow 1} \frac{(x-1)^{2}}{\arcsin x}$
(c) $\lim _{x \rightarrow 0^{+}}\left(\frac{1}{\ln (x+1)}-\frac{1}{\sin x}\right)$
(d) $\lim _{\theta \rightarrow 0}(\cos \theta)^{1 / \theta^{2}}$

Question 2.

(a) Find $\frac{d y}{d x}$ if $y=\cos ^{2}(\ln x)$. Do not simplify your answer.
(b) Find $\frac{d y}{d x}$ if $y+\sec (x y)=2 x^{3}+y^{4}$.
(c) Find $\frac{d y}{d x}$ at $(e, 0)$ if $x^{y}=\ln (x+y)$.

Question 3. Consider the function $f(x)=x^{3}+2 x^{2}+x$.
(a) Find the interval(s) on which f is increasing and the interval(s) on which f is decreasing.
(b) Find the interval(s) on which f is concave up and the interval(s) on which f is concave down.
(c) Find the critical points of f. Classify each of these critical points as a local minimum, local maximum or neither.
(d) Find the points over the interval $\left[-2,-\frac{1}{2}\right]$ at which f has a global minimum and a global maximum.

Question 4. An object moves along the curve $x^{4} y^{2}=1$. If the rate of change of the x-coordinate of the object is constant and equal to -1 units/s, find the rate of change of the distance from the object to the origin when the object passes through the point $(x, y)=(1,-1)$.

Question 5. Consider a box with square base. In order to be sent through P.T.T., the height of the box and the perimeter of the base can add up to at most 120 cm . What is the maximum volume for such a box?

Question 6. Let $f(x)$ be a twice differentiable function with $f(-1)=1, f(0)=4$ and $f(1)=2$.
(a) Show that there exist two points $c_{1} \in(-1,0)$ and $c_{2} \in(0,1)$ such that $f^{\prime}\left(c_{1}\right)=$ 3 and $f^{\prime}\left(c_{2}\right)=-2$.
(b) Show that f has a critical point on $(-1,1)$.
(c) Show that $f^{\prime \prime}(c)<0$ for some $c \in(-1,1)$.

