Math 20C (Lecture C) - Homework 3

(Due on November 14th, Wednesday by 3pm)

This homework covers sections 14.1-4 from Stewart's book. You need to return only the questions marked with (*). The others are provided for practicing purposes.

1. (Section 14.1) Find the domains and the ranges of the following functions.

a.	$f(x,y) = x^2 + y$	b.	$g(x,y) = \ln(xy)$
c.	$h(x,y) = ye^x - 2$	d.	$u(x,y) = x^y$

2.(*) (Section 14.1) Plot the contour diagrams of the following functions for z = 0, 1, 2, 3. Describe in words in which directions the functions are becoming steeper.

a.
$$z = f(x, y) = \sqrt{4x^2 + y^2}$$

b. $z = g(x, y) = 4x^2 + y^2$
c. $z = h(x, y) = (4x^2 + y^2)^{1/4}$
d. $z = u(x, y) = \sqrt{9 - 4x^2 - y^2}$

3.(*) (Section 14.2) In each part determine whether the limit exists or not. If the limit exists indicate which value the function is approaching. Justify your answers.

a.
$$\lim_{(x,y)\to(\sqrt{\pi/2},\sqrt{\pi/2})} \sin(x^2 + xy + y^2)$$

b. $\lim_{(x,y)\to(0,0)} \frac{x^2}{x+y}$
c. $\lim_{(x,y)\to(\infty,\infty)} \frac{\sin(xy)}{xy}$
d. $\lim_{(x,y)\to(0,0)} \frac{y^2}{|x|}$

4.(*) (Section 14.2) Which of the following functions are continuous at (x, y) = (2, 1)? Justify your answer.

a.
$$f(x,y) = \begin{cases} \frac{x-2}{y-1} & (x,y) \neq (2,1) \\ 0 & (x,y) = (2,1) \end{cases}$$

b. $u(x,y) = \frac{x-2}{y}$
c. $g(x,y) = \frac{(x-2)^2}{|y-1|}$
d. $h(x,y) = \begin{cases} \frac{(x-2)^4}{(y-1)^2} & (x,y) \neq (2,1) \\ 0 & (x,y) = (2,1) \end{cases}$

5.(*) (Section 14.3) Calculate the first and second partial derivatives of the functions below. Verify in each case that $f_{xy} = f_{yx}$.

a. $f(x, y) = x^3 + \cos(y)$ **b.** $f(x, y) = x^3 \cos(y)$ **c.** $f(x, y) = \cos(x^3 y)$ **d.** $f(x, y) = (\cos(x))^{3y}$ 6. (Sections 14.2-3) Based on the contour diagram of a function z = f(x, y) illustrated below determine the signs of the derivatives f_x , f_y , f_{xx} , f_{xy} and f_{yy} at the point P.

7. (*) (Section 14.4) Let $f(x, y) = x \ln(xy)$.

a. Find the equation of the tangent plane for f(x, y) at (x, y) = (1, e).

b. Find the parametric equation of the line passing through (x, y) = (1, e) that is perpendicular to the tangent plane for f(x, y) at (x, y) = (1, e). This line is called the *normal line* to f(x, y) at (x, y) = (1, e).

c. Find the symmetric equation of the line tangent to f(x, y) at (x, y) = (1, e) and lying on the plane x = 1.

d. Find the symmetric equation of the line tangent to f(x, y) at (x, y) = (1, e) and lying on the plane y = e.

8. (*) (Section 14.4 - Modified from exercise 14.4.37 from Stewart's book) The total resistance R of two resistors with resistances R_1 and R_2 connected in parallel is given by

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}.$$

Suppose that the resistances R_1 and R_2 are measured in ohms as 20Ω and 60Ω , respectively.

a. Find a linear approximation for R in terms of R_1 and R_2 around $(R_1, R_2) = (20, 60)$.

b. Use the linear approximation from part **a**. to estimate the total resistance if the actual resistance of each of R_1 and R_2 is %1 greater than the value indicated by the measurements.