Math 20C (Lecture C) - Homework 3

(Due on November 14th, Wednesday by 3pm)
This homework covers sections 14.1-4 from Stewart's book. You need to return only the questions marked with (*). The others are provided for practicing purposes.

1. (Section 14.1) Find the domains and the ranges of the following functions.
a. $f(x, y)=x^{2}+y$
b. $g(x, y)=\ln (x y)$
c. $h(x, y)=y e^{x}-2$
d. $u(x, y)=x^{y}$
2. $\mathbf{*}^{*}$) (Section 14.1) Plot the contour diagrams of the following functions for $z=0,1,2,3$. Describe in words in which directions the functions are becoming steeper.
a. $z=f(x, y)=\sqrt{4 x^{2}+y^{2}}$
b. $z=g(x, y)=4 x^{2}+y^{2}$
c. $z=h(x, y)=\left(4 x^{2}+y^{2}\right)^{1 / 4}$
d. $z=u(x, y)=\sqrt{9-4 x^{2}-y^{2}}$
3.(*) (Section 14.2) In each part determine whether the limit exists or not. If the limit exists indicate which value the function is approaching. Justify your answers.
a. $\lim _{(x, y) \rightarrow(\sqrt{\pi / 2}, \sqrt{\pi / 2})} \sin \left(x^{2}+x y+y^{2}\right)$
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x+y}$
c. $\lim _{(x, y) \rightarrow(\infty, \infty)} \frac{\sin (x y)}{x y}$
d. $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}}{|x|}$
4.(*) (Section 14.2) Which of the following functions are continuous at $(x, y)=(2,1)$? Justify your answer.
a. $f(x, y)=\left\{\begin{array}{ll}\frac{x-2}{y-1} & (x, y) \neq(2,1) \\ 0 & (x, y)=(2,1)\end{array} \quad\right.$ b. $u(x, y)=\frac{x-2}{y}$
c. $g(x, y)=\frac{(x-2)^{2}}{|y-1|}$
d. $h(x, y)= \begin{cases}\frac{(x-2)^{4}}{(y-1)^{2}} & (x, y) \neq(2,1) \\ 0 & (x, y)=(2,1)\end{cases}$
5.(*) (Section 14.3) Calculate the first and second partial derivatives of the functions below. Verify in each case that $f_{x y}=f_{y x}$.
a. $f(x, y)=x^{3}+\cos (y)$
b. $f(x, y)=x^{3} \cos (y)$
c. $f(x, y)=\cos \left(x^{3} y\right)$
d. $f(x, y)=(\cos (x))^{3 y}$
3. (Sections 14.2-3) Based on the contour diagram of a function $z=f(x, y)$ illustrated below determine the signs of the derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}$ and $f_{y y}$ at the point P.

4. $\left.{ }^{*}\right)($ Section 14.4) Let $f(x, y)=x \ln (x y)$.
a. Find the equation of the tangent plane for $f(x, y)$ at $(x, y)=(1, e)$.
b. Find the parametric equation of the line passing through $(x, y)=(1, e)$ that is perpendicular to the tangent plane for $f(x, y)$ at $(x, y)=(1, e)$. This line is called the normal line to $f(x, y)$ at $(x, y)=(1, e)$.
c. Find the symmetric equation of the line tangent to $f(x, y)$ at $(x, y)=(1, e)$ and lying on the plane $x=1$.
d. Find the symmetric equation of the line tangent to $f(x, y)$ at $(x, y)=(1, e)$ and lying on the plane $y=e$.
5. (*) (Section 14.4-Modified from exercise 14.4.37 from Stewart's book) The total resistance R of two resistors with resistances R_{1} and R_{2} connected in parallel is given by

$$
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}
$$

Suppose that the resistances R_{1} and R_{2} are measured in ohms as 20Ω and 60Ω, respectively.
a. Find a linear approximation for R in terms of R_{1} and R_{2} around $\left(R_{1}, R_{2}\right)=(20,60)$.
b. Use the linear approximation from part a. to estimate the total resistance if the actual resistance of each of R_{1} and R_{2} is $\% 1$ greater than the value indicated by the measurements.

