Name:
PID:
Discussion Section - No: Time:

Midterm 1, Math 20C (Lecture C)

November 2nd, 2007

Duration: 50 minutes
This is an open-book exam. Calculators and computing devices are not allowed.
To get full credit you should support your answers.

1. An object slides 5 meters over the inclined surface with slope 60° due to the vertical gravitational force $\mathbf{F}_{\mathbf{g}}$ with magnitude $\left|\mathbf{F}_{\mathbf{g}}\right|=50$ Newton as illustrated in the figure below.

a) (1 point) Express the displacement vector \mathbf{d} (note that $|\mathbf{d}|=5$ meters) in terms of the standard basis vectors \vec{i} and \vec{j}.
b) (2 points) Find the projection of $\mathbf{F}_{\mathbf{g}}$ onto \mathbf{d}.

$\#$	Score
$1(5$ points $)$	
$2(7$ points $)$	
$3(6$ points $)$	
$4(7$ points $)$	
Total $(25$ points $)$	

c) (2 points) Find the work done by the gravitational force in Newton • meters.
2. The position of a particle in 3D space as a function of time t is given by

$$
\mathbf{r}(t)=t \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}, \quad t \geq 0 .
$$

a) (2 points) Find the velocity $\mathbf{v}(t)$ and acceleration $\mathbf{a}(t)$ of the particle as functions of time.
b) (2 points) Find the cosine of the angle between $\mathbf{a}(1)$ and $\mathbf{v}(1)$.
c) (3 points) Find the equation of the plane passing through $\mathbf{r}(1)$ and containing $\mathbf{a}(1)$ and $\mathbf{v}(1)$. This is the osculating plane to which the particle stays close around $t=1$.
3. The graph of the cycloid generated by the parametric equation

$$
x(\theta)=(\theta-\sin (\theta)) \quad \text { and } \quad y(\theta)=(1-\cos (\theta)), \quad 0 \leq \theta<2 \pi
$$

is illustrated below. The curve intersects the x-axis at $\theta=0$ and $\theta=2 \pi$.

a) (3 points) Write down a definite integral for the area between the cycloid and the x-axis. Do not evaluate the integral.
b) (3 points) Find the equation of the line tangent to the cycloid at $\theta=\pi / 2$.
4. Consider the parametric curve \mathcal{C} in 3 D space

$$
x(t)=3 \sin (t), \quad y(t)=5 \cos (t) \quad \text { and } \quad z(t)=4 \sin (t), \quad t \geq 0
$$

a) (3 points) Find the unit tangent vector $\mathbf{T}(t)$ to \mathcal{C}.
b) (2 points) Find the unit tangent vector $\hat{\mathbf{T}}(s)$ parametrized in terms of the arc-length s, that is $\hat{\mathbf{T}}(s)=\mathbf{T}\left(t^{\prime}\right)$ where s is the arc-length of the curve \mathcal{C} from $t=0$ to $t=t^{\prime}$.
c) (2 points) Show that the curvature $\kappa(s)$ of \mathcal{C} is constant and equal to $1 / 5$.

