Midterm 2, Math 20C (Lecture C) November 28th, 2007

1. Consider the function

$$
f(x, y)= \begin{cases}\frac{x^{2}+4 y^{2}}{4 x y} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

a) (3 points) Plot the contour diagrams of $z=f(x, y)$ for $z=-1,0,1$.

Setting $z=-1$, we have $0=x^{2}+4 x y+4 y^{2}=(x+2 y)^{2}$.
Setting $z=1$, we have $0=x^{2}-4 x y+4 y^{2}=(x-2 y)^{2}$.
The function takes the value $z=0$, only at $(x, y)=(0,0)$.
Therefore the level sets when $z=-1$ and $z=1$ are the lines $x=-2 y$ and $x=2 y$, respectively. The level set $z=0$ is just the origin.

Answer for the other version: The level sets when $z=-2$ and $z=2$ are the lines $y=-2 x$ and $y=2 x$, respectively. The level set $z=0$ is just the origin.

b) (3 points) Is $f(x, y)$ continuous at $(x, y)=(0,0)$? Justify your answer.

No, it is not continuous at $(0,0)$, because

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)
$$

does not exist. Suppose we approach the origin along the line $y=k x$. The function along this line is $f(x, k x)=\frac{x^{2}+4 k^{2} x^{2}}{4 k x^{2}}=\frac{1+4 k^{2}}{4 k}$. For instance along the line $y=x(k=1)$, the function is constant and equal to $\frac{5}{4}$. But along the line $y=-x(k=-1)$, the function takes the value $-\frac{5}{4}$. Since along different paths leading to $(0,0)$ the function $f(x, y)$ approaches different values, the limit as $(x, y) \rightarrow(0,0)$ does not exist.

Answer for the other version: The function is discontinuous at $(0,0)$, since the limit as $(x, y) \rightarrow(0,0)$ does not exist. Along different lines, the function approaches different values as $(x, y) \rightarrow(0,0)$.
2. The kinetic energy of an object in Joules (a unit for work and energy) with mass m in $k g$ and velocity v in $\mathrm{m} / \mathrm{sec}$ is given by the equation

$$
E(m, v)=\frac{1}{2} m v^{2} .
$$

a) (3 points) Find the linearization of $E(m, v)$ at $(m, v)=(3,6)$.

We need to evaluate the function and its derivatives at $(3,6)$.

$$
\begin{aligned}
E(3,6) & =0.5(3)(6)^{2}=54 \\
E_{1}(x, y) & =\frac{1}{2} v^{2} \Rightarrow E_{1}(3,6)=0.5\left(6^{2}\right)=18 \\
E_{2}(x, y) & =m v \Rightarrow E_{2}(3,6)=(3)(6)=18
\end{aligned}
$$

The linearization of $E(m, v)$ at $(3,6)$ is the equation of the tangent plane to $E(m, v)$ at $(3,6)$

$$
\begin{array}{r}
L(m, v)=E(3,6)+E_{1}(3,6)(m-3)+E_{2}(3,6)(v-6) \\
L(m, v)=54+18(m-3)+18(v-6) .
\end{array}
$$

Answer for the other version: The linearization of $E(m, v)$ at $(1,2)$ is

$$
\begin{array}{r}
L(m, v)=E(1,2)+E_{1}(1,2)(m-1)+E_{2}(1,2)(v-2) \\
L(m, v)=2+2(m-1)+2(v-2)
\end{array}
$$

b) (3 points) The mass and velocity of an object are measured as 3 kg and $6 \mathrm{~m} / \mathrm{sec}$, respectively. If each of the actual values of the mass and velocity is $\% 1$ greater than the corresponding measured value, estimate the kinetic energy of the object using the linearization from part a).

The actual mass and velocity of the object are $m=1.01(3)=3.03$ and $v=1.01(6)=6.06$. Substituting these values in the linearization will give an approximate value for the kinetic energy.

$$
L(3.03,6.06)=54+18(0.03)+18(0.06)=55.62 \text { Joules } .
$$

Answer for the other version: The actual values of mass and velocity are $m=1.01$ and $v=2.02$.

$$
L(1.01,2.02)=2+2(0.01)+2(0.02)=2.06 \text { Joules } .
$$

3. Let

$$
g(x, y)=e^{(x-1)^{2}-y^{2}}
$$

a) (2 points) Find the gradient vector $\nabla g(2,1)$.

The partial derivatives of g with respect to x and y are given by

$$
g_{1}(x, y)=2(x-1) e^{(x-1)^{2}-y^{2}} \text { and } g_{2}(x, y)=-(2 y) e^{(x-1)^{2}-y^{2}}
$$

We need to evaluate the partial derivatives at $(2,1)$.

$$
\nabla g(2,1)=\left(g_{1}(2,1), g_{2}(2,1)\right)=(2,-2) .
$$

Answer for the other version: The partial derivatives are given by

$$
g_{1}(x, y)=(2 x) e^{x^{2}-(y-2)^{2}} \text { and } g_{2}(x, y)=-2(y-2) e^{x^{2}-(y-2)^{2}}
$$

Evaluating the derivatives at $(1,3)$ yields

$$
\nabla g(1,3)=(2,-2)
$$

b) (3 points) Find the directional derivative $D_{\vec{u}} g(2,1)$ in the direction of $\vec{u}=\frac{1}{2} \vec{i}-\frac{\sqrt{3}}{2} \vec{j}$.

The directional derivative is the dot product of the gradient and the direction vectors.

$$
D_{\vec{u}} g(2,1)=\nabla g(2,1) \cdot \vec{u}=(2,-2) \cdot\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)=2(1 / 2)+(-2)(-\sqrt{3} / 2)=1+\sqrt{3} .
$$

Answer for the other version:

$$
D_{\vec{u}} g(1,3)=\nabla g(1,3) \cdot \vec{u}=(2,-2) \cdot(-3 / 5,-4 / 5)=2(-3 / 5)+(-2)(-4 / 5)=2 / 5 .
$$

c) (3 points) Find the unit vector \vec{u} so that the directional derivative $D_{\vec{u}} g(2,1)$ in the direction of \vec{u} at $(x, y)=(2,1)$ is as small as possible, that is for any unit vector \vec{w}, $D_{\vec{u}} g(2,1) \leq D_{\vec{w}} g(2,1)$.

Once again using the dot product formula for the directional derivatives

$$
D_{\vec{u}} g(2,1)=\nabla g(2,1) \cdot \vec{u}=|\nabla g(2,1)| \cos (\theta)
$$

where θ is the angle between the direction vector \vec{u} and $\nabla g(2,1)$. If we choose $\theta=\pi$, $\cos (\theta)=-1$ and $D_{\vec{u}} g(2,1)=-|\nabla g(2,1)|$ is as small as possible. Therefore the directional derivative is minimized when \vec{u} points in the direction opposite to $\nabla g(2,1)$, that is

$$
\vec{u}=-\frac{\nabla g(2,1)}{|\nabla g(2,1)|}=-\frac{(2,-2)}{2 \sqrt{2}}=(-1 / \sqrt{2}, 1 / \sqrt{2})
$$

Answer for the other version: The directional derivative is minimized in the direction opposite to $\nabla g(1,3)$.

$$
\vec{u}=-\frac{\nabla g(1,3)}{|\nabla g(1,3)|}=-\frac{(2,-2)}{2 \sqrt{2}}=(-1 / \sqrt{2}, 1 / \sqrt{2})
$$

4. (5 points) Find the points on the curve $y x=16$ that are closest to the origin by posing a constrained optimization problem and solving it using Lagrange multipliers. (Remark : The global minima of $x^{2}+y^{2}$ and $\sqrt{x^{2}+y^{2}}$ subject to any constraint are the same.)

Figure 1: The graph of the curve $y x=16$ is illustrated above.

The constrained optimization problem can be posed as

$$
\text { minimize } f(x, y) \text { subject to } g(x, y)=16
$$

where the objective and constraints functions are

$$
f(x, y)=\sqrt{x^{2}+y^{2}} \text { and } g(x, y)=y x
$$

respectively. Furthermore we can minimize $h(x, y)=f^{2}(x, y)=x^{2}+y^{2}$ instead of $f(x, y)=$ $\sqrt{x^{2}+y^{2}}$, because both of the functions must be minimized at exactly the same point. (This is to simplify the derivatives; you would obtain the same answer, if you minimize $f(x, y)$, but the solution would be longer.) Therefore we need to solve the problem

$$
\operatorname{minimize} h(x, y) \text { subject to } g(x, y)=16
$$

We need to calculate the gradients of $h(x, y)$ and $g(x, y)$.

$$
\nabla h(x, y)=(2 x, 2 y) \text { and } \nabla g(x, y)=(y, x)
$$

At the closest point the gradient vectors must be multiples of each other,

$$
\nabla h(x, y)=\lambda \nabla g(x, y) \Rightarrow(i) 2 x=\lambda y, \quad \text { (ii) } 2 y=\lambda x
$$

By eliminating λ in the rightmost two equations, we have

$$
\frac{2 x}{y}=\frac{2 y}{x} \Rightarrow x= \pm y .
$$

But $x=-y$ does not satisfy the constraint $x y=16$; if we substitute $-y$ for x in the constraint, we obtain $-y^{2}=16$. By substituting y for x in the constraint we obtain

$$
y^{2}=16 \Rightarrow y= \pm 4
$$

Therefore the closest points on the curve $y x=16$ are

$$
(4,4) \text { and }(-4,-4)
$$

Answer for the other version: The solution above with the constraint $y x=4$ yields the closest points on the curve as

$$
(2,2) \text { and }(-2,-2)
$$

