Name:
PID:
Discussion Section - No: Time:

Midterm 2, Math 20C (Lecture C)

November 28th, 2007
Duration: 50 minutes
This is an open-book exam. Calculators and computing devices are not allowed. To get full credit you should support your answers.

1. Consider the function

$$
f(x, y)= \begin{cases}\frac{4 x^{2}+y^{2}}{2 x y} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

a) (3 points) Plot the contour diagrams of $z=f(x, y)$ for $z=-2,0,2$.
b) (3 points) Is $f(x, y)$ continuous at $(x, y)=(0,0)$? Justify your answer.

$\#$	Score
$1(6$ points $)$	
$2(6$ points $)$	
$3(8$ points $)$	
$4(5$ points $)$	
Total $(25$ points $)$	

2. The kinetic energy of an object in Joules (a unit for work and energy) with mass m in kg and velocity v in $\mathrm{m} / \mathrm{sec}$ is given by the equation

$$
E(m, v)=\frac{1}{2} m v^{2} .
$$

a) (3 points) Find the linearization of $E(m, v)$ at $(m, v)=(1,2)$.
b) (3 points) The mass and velocity of an object are measured as 1 kg and $2 \mathrm{~m} / \mathrm{sec}$, respectively. If each of the actual values of the mass and velocity is $\% 1$ greater than the corresponding measured value, estimate the kinetic energy of the object using the linearization from part a).
3. Let

$$
g(x, y)=e^{x^{2}-(y-2)^{2}}
$$

a) (2 points) Find the gradient vector $\nabla g(1,3)$.
b) (3 points) Find the directional derivative $D_{\vec{u}} g(1,3)$ in the direction of $\vec{u}=-\frac{3}{5} \vec{i}-\frac{4}{5} \vec{j}$.
c) (3 points) Find the unit vector \vec{u} so that the directional derivative $D_{\vec{u}} g(1,3)$ in the direction of \vec{u} at $(x, y)=(1,3)$ is as small as possible, that is for any unit vector \vec{w}, $D_{\vec{u}} g(1,3) \leq D_{\vec{w}} g(1,3)$.
4. (5 points) Find the points on the curve $y x=4$ that are closest to the origin by posing a constrained optimization problem and solving it using Lagrange multipliers. (Remark: The global minima of $x^{2}+y^{2}$ and $\sqrt{x^{2}+y^{2}}$ subject to any constraint are the same.)

Figure 1: The graph of the curve $y x=4$ is illustrated above.

