Midterm 2, Math 20F - Lecture B (Spring 2007)

1. An $n \times n$ matrix A is called skew-symmetric if $A^{T}=-A$. Specifically the set of 2×2 skew-symmetric matrices is given by

$$
S^{2 \times 2}=\left\{\left[\begin{array}{rr}
0 & -a \\
a & 0
\end{array}\right]: a \in \mathbb{R}\right\}
$$

Let $T: L^{2 \times 2} \rightarrow S^{2 \times 2}$ be the transformation from the 2×2 lower triangular matrices onto the 2×2 skew-symmetric matrices defined as

$$
T\left(\left[\begin{array}{ll}
b & 0 \\
a & c
\end{array}\right]\right)=\left[\begin{array}{rr}
0 & -a \\
a & 0
\end{array}\right]
$$

where a, b, c are real numbers.
a) (1 point) Show that $S^{2 \times 2}$ is a one-dimensional subspace of 2×2 matrices. Find a basis for this subspace.

Solution:

$S^{2 \times 2}$ can be expressed as a span of a matrix,

$$
S^{2 \times 2}=\left\{a\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]: a \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\right\} .
$$

Therefore $S^{2 \times 2}$ is a 1-dimensional subspace of the space of 2×2 matrices with the basis

$$
\left\{\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\right\} .
$$

b) (2 points) Show that T is a linear transformation.

Solution:

We need to verify the following two properties to show that T is linear.

$$
\text { Additivity: } \begin{aligned}
T\left(\left[\begin{array}{cc}
b_{1} & 0 \\
a_{1} & c_{1}
\end{array}\right]\right)+T\left(\left[\begin{array}{cc}
b_{2} & 0 \\
a_{2} & c_{2}
\end{array}\right]\right) & =T\left(\left[\begin{array}{cc}
b_{1}+b_{2} & 0 \\
a_{1}+a_{2} & c_{1}+c_{2}
\end{array}\right]\right) \\
{\left[\begin{array}{cc}
0 & -a_{1} \\
a_{1} & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & -a_{2} \\
a_{2} & 0
\end{array}\right] } & =\left[\begin{array}{cc}
0 & -\left(a_{1}+a_{2}\right) \\
a_{1}+a_{2} & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\text { Multiplication with a scalar : } \begin{aligned}
T\left(\alpha\left[\begin{array}{ll}
b & 0 \\
a & c
\end{array}\right]\right) & =\alpha T\left(\left[\begin{array}{cc}
b & 0 \\
a & c
\end{array}\right]\right) \\
{\left[\begin{array}{cc}
0 & -\alpha a \\
\alpha a & 0
\end{array}\right] } & =\alpha\left[\begin{array}{cc}
0 & -a \\
a & 0
\end{array}\right]
\end{aligned}
$$

c) (2 points) Find a basis for the kernel of T.

Solution:

By definition

$$
\begin{aligned}
\operatorname{Kernel}(\mathrm{T}) & =\left\{\left[\begin{array}{ll}
b & 0 \\
a & c
\end{array}\right]: T\left(\left[\begin{array}{ll}
b & 0 \\
a & c
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & -a \\
a & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\right\} \\
& =\left\{\left[\begin{array}{ll}
b & 0 \\
0 & c
\end{array}\right]: b, c \in \mathbb{R}\right\}=\left\{b\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]: b, c \in \mathbb{R}\right\} \\
& =\operatorname{span}\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} .
\end{aligned}
$$

Since the matrices

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

are not multiple of each other, they are linearly independent. Therefore the set

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

is a basis for the kernel of T.
2. (Each part is 1 point) Determine whether each of the following statements is true or false. For each part circle either \mathbf{T} (true) or \mathbf{F} (false). You do not need to justify your answers.
(i) The matrix

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

is invertible. $\quad \mathbf{T} \quad \mathbf{F}$
True : The columns of the matrix are linearly independent.
(ii) Any $n \times n$ matrix A has an $L U$ factorization, that is there exist a lower triangular matrix L and an upper triangular matrix U such that $A=L U . \quad \mathbf{T} \quad \mathbf{F}$
False : It may be necessary to reorder the rows of A so that an $L U$ factorization exists.
(iii) The column space of an $n \times m$ matrix A is preserved when an elementary row operation is applied. That is if E is an $n \times n$ elementary matrix, the column spaces of $E A$ and A are the same. $\quad \mathbf{T} \quad \mathbf{F}$
False : Row operations preserve the row space, but not the column space.
(iv) If the kernel of a linear transformation from a vector space to another vector space is $\{0\}$, then it is one-to-one. $\quad \mathbf{T} \quad \mathbf{F}$
True : If $T(x)=T(y)$, by the linearity of T it follows that $T(x-y)=0$. But the kernel of T is $\{0\}$ implying $x-y=0$ or equivalently $x=y$; that is no two distinct x, y can be mapped to the same vector by T.
(v) The set $\left\{1,1+x, 2+x^{2}, x+x^{2}\right\}$ is a basis for $\mathbb{P}_{2}=\left\{a_{0}+a_{1} x+a_{2} x^{2}: a_{0}, a_{1}, a_{2} \in \mathbb{R}\right\}$, the vector space of polynomials of degree at most two. $\quad \mathbf{T} \quad \mathbf{F}$
False : \mathbb{P}_{2} is a vector space of dimension 3 . No basis can contain 4 vectors.
3. Let

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
-2 & 1 & -1 \\
0 & -2 & 1
\end{array}\right]
$$

a) (2 points) Find an $L U$ factorization for A.

Solution:

Recall the procedure to obtain an $L U$ factorization. While we reduce A into an echelon form, we keep track of the elementary matrices applied to A from left, that is

$$
[A \mid I] \longrightarrow\left[E_{p} E_{p-1} \ldots E_{1} A \mid E_{1}^{-1} \ldots E_{p-1}^{-1} E_{p}^{-1}\right]=[U \mid L]
$$

where $U=E_{p} E_{p-1} \ldots E_{1} A$ is the echelon matrix obtained by applying row operations corresponding to the elementary matrices $E_{1}, E_{2}, \ldots E_{p}$ and $L=E_{1}^{-1} \ldots E_{p-1}^{-1} E_{p}^{-1}$. Applying this procedure yields

$$
\begin{aligned}
{\left[\begin{array}{rrr|rrr}
1 & -1 & 0 & 1 & 0 & 0 \\
-2 & 1 & -1 & 0 & 1 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right] } & \xrightarrow{r_{2}:=r_{2}+2 r_{1}}\left[\begin{array}{rrr|rrr}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{r_{3}:=r_{3}-2 r_{2}}\left[\begin{array}{rrr|rrr}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & 0 & 3 & 0 & 2 & 1
\end{array}\right] .
\end{aligned}
$$

Therefore an $L U$ factorization for A is

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & -1 & -1 \\
0 & 0 & 3
\end{array}\right]
$$

b) (3 points) Find the inverse of A.

Solution:

One approach is to use the $L U$ factorization, since $A^{-1}=U^{-1} L^{-1}$ it would be sufficient to determine the inverses of U and L, then multiply them. Because of the special structure of the matrix (it has some zeros and the entries along any diagonal are fixed), it is also efficient to find the inverse of A directly by solving the linear systems

$$
A x_{1}=e_{1}, A x_{2}=e_{2}, A x_{3}=e_{3}
$$

simultaneously. The matrix $\left[x_{1} x_{2} x_{3}\right]$ gives the inverse. Applying this approach yields

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
1 & -1 & 0 & 1 & 0 & 0 \\
-2 & 1 & -1 & 0 & 1 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right] \quad \xrightarrow{r_{2}:=r_{2}+2 r_{1}}\left[\begin{array}{rrr|rrr}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & 2 & 1 & 0 \\
0 & -2 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& \xrightarrow{r_{3}:=r_{3}-2 r_{2}}\left[\begin{array}{rrr|rrr}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & 2 & 1 & 0 \\
0 & 0 & 3 & -4 & -2 & 1
\end{array}\right] \\
& \xrightarrow{r_{2}:=-r_{2} r_{3}:=r_{3} / 3}\left[\begin{array}{rrr|rrr}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & -2 & -1 & 0 \\
0 & 0 & 1 & -4 / 3 & -2 / 3 & 1 / 3
\end{array}\right] \\
& \xrightarrow{r_{2}:=r_{2}-r_{3}}\left[\begin{array}{rrr|rrr}
1 & -1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 / 3 & -1 / 3 & -1 / 3 \\
0 & 0 & 1 & \mid r & -4 / 3 & -2 / 3
\end{array}\right] \\
& \xrightarrow{r_{1}:=r_{1}+r_{2}}\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 1 / 3 & -1 / 3 & -1 / 3 \\
0 & 1 & 0 & -2 / 3 & -1 / 3 & -1 / 3 \\
0 & 0 & 1 & -4 / 3 & -2 / 3 & 1 / 3
\end{array}\right] .
\end{aligned}
$$

The matrix

$$
A^{-1}=\left[\begin{array}{rrr}
1 / 3 & -1 / 3 & -1 / 3 \\
-2 / 3 & -1 / 3 & -1 / 3 \\
-4 / 3 & -2 / 3 & 1 / 3
\end{array}\right]
$$

is the inverse of A.
4. The singular matrices can also be characterized in terms of their $L U$ factorizations.
a) (3 points) Suppose $A=L U$ is an $L U$ factorization for an $n \times n$ matrix A. Given that L is invertible (the procedure based on the elementary matrices to find an $L U$ factorization always yields an invertible lower triangular matrix) prove that A is singular if and only if U is singular.

Solution:

Suppose A is singular, then the columns of A are linearly dependent. Therefore there exists an $x \in \mathbb{R}^{n}$ not equal to zero such that

$$
0=A x=L U x
$$

But L is invertible meaning

$$
L^{-1} 0=L^{-1} L U x=U x \Longrightarrow U x=0
$$

for some non-zero x. This shows that the columns of U are linearly dependent or equivalently U is singular.

Now suppose U is singular. Since the columns of U must be linearly dependent

$$
U x=0
$$

for some vector $x \in \mathbb{R}^{n}$ not equal to zero. By multiplying both sides of the equation above by the matrix L from left we obtain

$$
L U x=L 0=0 \Longrightarrow A x=0
$$

for some nonzero x implying that the columns of A are linearly dependent. Thus A is singular.
b) (2 points) Explain how you can determine whether an upper triangular matrix U is singular by only considering its diagonal entries. (Hint: If U is singular, its columns are linearly dependent. Therefore $U x=0$ has a non-trivial solution.)

Solution:

U is singular whenever at least one of its diagonal entries is equal to zero.

To see this let

$$
U=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right]
$$

that is $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{R}^{n}$ are the columns of U. If the homogeneous system has a non-trivial solution, there exist scalars $x_{1}, x_{2}, \ldots, x_{n}$ not all zero such that

$$
x_{1} u_{1}+x_{2} u_{2}+\cdots+x_{n} u_{n}=0 .
$$

If x_{n} is non-zero, u_{n} can be written as a linear combination of $u_{1}, u_{2}, \ldots, u_{n-1}$. Since U is upper triangular, the last components of $u_{1}, u_{2}, \ldots, u_{n-1}$ are all equal to zero. But u_{n} can be written as a linear combination $u_{1}, u_{2}, \ldots, u_{n-1}$, so its last component, the diagonal entry $u_{n n}$, is also zero. If x_{n} is zero, let $j<n$ be the largest index such that $x_{j} \neq 0$. (that is $x_{j+1}=x_{j+2}=\cdots=x_{n}=0$.) Since $x_{1} u_{1}+x_{2} u_{2}+\cdots+x_{j} u_{j}=0$, from the previous argument, now the diagonal entry on the j th column, $u_{j j}$, is zero.

Examples:

The matrices

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 2 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

are singular, while the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

is non-singular.

