
Midterm 2, Math 20F - Lecture B (Spring 2007)

1. An n × n matrix A is called skew-symmetric if AT = −A. Specifically the set of 2 × 2
skew-symmetric matrices is given by

S2×2 =

{[
0 −a
a 0

]
: a ∈ R

}
.

Let T : L2×2 → S2×2 be the transformation from the 2× 2 lower triangular matrices onto
the 2× 2 skew-symmetric matrices defined as

T

([
b 0
a c

])
=

[
0 −a
a 0

]
,

where a, b, c are real numbers.

a) (1 point) Show that S2×2 is a one-dimensional subspace of 2× 2 matrices. Find a basis
for this subspace.

Solution:
S2×2 can be expressed as a span of a matrix,

S2×2 =

{
a

[
0 −1
1 0

]
: a ∈ R

}
= span

{[
0 −1
1 0

]}
.

Therefore S2×2 is a 1-dimensional subspace of the space of 2× 2 matrices with the basis{[
0 −1
1 0

]}
.

b) (2 points) Show that T is a linear transformation.

Solution:
We need to verify the following two properties to show that T is linear.

Additivity : T

([
b1 0
a1 c1

])
+ T

([
b2 0
a2 c2

])
= T

([
b1 + b2 0
a1 + a2 c1 + c2

])
[

0 −a1

a1 0

]
+

[
0 −a2

a2 0

]
=

[
0 −(a1 + a2)

a1 + a2 0

]
and

Multiplication with a scalar : T

(
α

[
b 0
a c

])
= αT

([
b 0
a c

])
[

0 −αa
αa 0

]
= α

[
0 −a
a 0

]



c) (2 points) Find a basis for the kernel of T .

Solution:
By definition

Kernel(T) =

{[
b 0
a c

]
: T

([
b 0
a c

])
=

[
0 −a
a 0

]
=

[
0 0
0 0

]}
=

{[
b 0
0 c

]
: b, c ∈ R

}
=

{
b

[
1 0
0 0

]
+ c

[
0 0
0 1

]
: b, c ∈ R

}
= span

{[
1 0
0 0

]
,

[
0 0
0 1

]}
.

Since the matrices [
1 0
0 0

]
,

[
0 0
0 1

]
are not multiple of each other, they are linearly independent. Therefore the set{[

1 0
0 0

]
,

[
0 0
0 1

]}
is a basis for the kernel of T .

2. (Each part is 1 point) Determine whether each of the following statements is true
or false. For each part circle either T(true) or F(false). You do not need to justify your
answers.

(i) The matrix  0 1 0
0 0 1
1 0 0


is invertible. T F
True : The columns of the matrix are linearly independent.

(ii) Any n×n matrix A has an LU factorization, that is there exist a lower triangular matrix
L and an upper triangular matrix U such that A = LU . T F
False : It may be necessary to reorder the rows of A so that an LU factorization exists.

(iii) The column space of an n×m matrix A is preserved when an elementary row operation
is applied. That is if E is an n× n elementary matrix, the column spaces of EA and A are
the same. T F
False : Row operations preserve the row space, but not the column space.



(iv) If the kernel of a linear transformation from a vector space to another vector space is
{0}, then it is one-to-one. T F
True : If T (x) = T (y), by the linearity of T it follows that T (x − y) = 0. But the kernel
of T is {0} implying x − y = 0 or equivalently x = y; that is no two distinct x, y can be
mapped to the same vector by T .

(v) The set {1, 1 + x, 2 + x2, x + x2} is a basis for P2 = {a0 + a1x + a2x
2 : a0, a1, a2 ∈ R},

the vector space of polynomials of degree at most two. T F
False : P2 is a vector space of dimension 3. No basis can contain 4 vectors.

3. Let

A =

 1 −1 0
−2 1 −1

0 −2 1


.

a) (2 points) Find an LU factorization for A.

Solution:
Recall the procedure to obtain an LU factorization. While we reduce A into an echelon
form, we keep track of the elementary matrices applied to A from left, that is

[A|I] −→ [EpEp−1 . . . E1A|E−1
1 . . . E−1

p−1E
−1
p ] = [U |L]

where U = EpEp−1 . . . E1A is the echelon matrix obtained by applying row operations corre-
sponding to the elementary matrices E1, E2, . . . Ep and L = E−1

1 . . . E−1
p−1E

−1
p . Applying this

procedure yields 1 −1 0 |
−2 1 −1 |

0 −2 1 |

1 0 0
0 1 0
0 0 1

 r2 := r2 + 2r1−−−−−−−−−→

 1 −1 0 |
0 −1 −1 |
0 −2 1 |

1 0 0
−2 1 0

0 0 1


r3 := r3 − 2r2−−−−−−−−−→

 1 −1 0 |
0 −1 −1 |
0 0 3 |

1 0 0
−2 1 0

0 2 1

 .

Therefore an LU factorization for A is

A =

 1 0 0
−2 1 0

0 2 1

 1 −1 0
0 −1 −1
0 0 3





b) (3 points) Find the inverse of A.

Solution:
One approach is to use the LU factorization, since A−1 = U−1L−1 it would be sufficient to
determine the inverses of U and L, then multiply them. Because of the special structure of
the matrix (it has some zeros and the entries along any diagonal are fixed), it is also efficient
to find the inverse of A directly by solving the linear systems

Ax1 = e1, Ax2 = e2, Ax3 = e3,

simultaneously. The matrix [x1 x2 x3] gives the inverse. Applying this approach yields 1 −1 0 |
−2 1 −1 |

0 −2 1 |

1 0 0
0 1 0
0 0 1

 r2 := r2 + 2r1−−−−−−−−−→

 1 −1 0 |
0 −1 −1 |
0 −2 1 |

1 0 0
2 1 0
0 0 1


r3 := r3 − 2r2−−−−−−−−−→

 1 −1 0 |
0 −1 −1 |
0 0 3 |

1 0 0
2 1 0

−4 −2 1


r2 := −r2 r3 := r3/3−−−−−−−−−−−−−−→

 1 −1 0 |
0 1 1 |
0 0 1 |

1 0 0
−2 −1 0

−4/3 −2/3 1/3


r2 := r2 − r3−−−−−−−−→

 1 −1 0 |
0 1 0 |
0 0 1 |

1 0 0
−2/3 −1/3 −1/3
−4/3 −2/3 1/3


r1 := r1 + r2−−−−−−−−→

 1 0 0 |
0 1 0 |
0 0 1 |

1/3 −1/3 −1/3
−2/3 −1/3 −1/3
−4/3 −2/3 1/3

 .

The matrix

A−1 =

 1/3 −1/3 −1/3
−2/3 −1/3 −1/3
−4/3 −2/3 1/3


is the inverse of A.



4. The singular matrices can also be characterized in terms of their LU factorizations.

a) (3 points) Suppose A = LU is an LU factorization for an n × n matrix A. Given that
L is invertible (the procedure based on the elementary matrices to find an LU factorization
always yields an invertible lower triangular matrix) prove that A is singular if and only if U
is singular.
Solution:
Suppose A is singular, then the columns of A are linearly dependent. Therefore there exists
an x ∈ Rn not equal to zero such that

0 = Ax = LUx.

But L is invertible meaning

L−10 = L−1LUx = Ux =⇒ Ux = 0

for some non-zero x. This shows that the columns of U are linearly dependent or equivalently
U is singular.

Now suppose U is singular. Since the columns of U must be linearly dependent

Ux = 0

for some vector x ∈ Rn not equal to zero. By multiplying both sides of the equation above
by the matrix L from left we obtain

LUx = L0 = 0 =⇒ Ax = 0

for some nonzero x implying that the columns of A are linearly dependent. Thus A is
singular.

b) (2 points) Explain how you can determine whether an upper triangular matrix U is
singular by only considering its diagonal entries. (Hint: If U is singular, its columns are
linearly dependent. Therefore Ux = 0 has a non-trivial solution.)
Solution:
U is singular whenever at least one of its diagonal entries is equal to zero.

To see this let
U = [u1 u2 . . . un],

that is u1, u2, . . . , un ∈ Rn are the columns of U . If the homogeneous system has a non-trivial
solution, there exist scalars x1, x2, . . . , xn not all zero such that

x1u1 + x2u2 + · · ·+ xnun = 0.

If xn is non-zero, un can be written as a linear combination of u1, u2, . . . , un−1. Since U is
upper triangular, the last components of u1, u2, . . . , un−1 are all equal to zero. But un can
be written as a linear combination u1, u2, . . . , un−1, so its last component, the diagonal entry
unn, is also zero. If xn is zero, let j < n be the largest index such that xj 6= 0. (that is
xj+1 = xj+2 = · · · = xn = 0.) Since x1u1+x2u2+ · · ·+xjuj = 0, from the previous argument,
now the diagonal entry on the jth column, ujj, is zero.



Examples:
The matrices  1 2 3

0 0 2
0 0 1

 ,

 1 2 3
0 1 2
0 0 0


are singular, while the matrix  1 2 3

0 1 2
0 0 1


is non-singular.


