Math 20F - Lecture C (Winter 2008) Homework 3

(Due on Friday, February 29th by 3pm)
*Please return your homeworks to the homework box on the 6th floor in the APM building.
*This homework covers sections 4.1-7 from your textbook.
You don't need to turn in the questions with (). But I highly recommend to solve these questions as well.

1. (Section 4.1) Solve questions 4.1.2, 4.1.8 $\left(^{*}\right), 4.1 .12\left(^{*}\right)$ and 4.1 .20 from the textbook.
2. (Section 4.2) Solve questions 4.2.4, 4.2.8 $\left(^{*}\right), 4.2 .18\left(^{*}\right)$ and 4.2 .32 from the textbook.
3. (Section 4.1, 4.3 and 4.5) Consider the subset of 3×3 matrices

$$
\mathbb{B}^{3 \times 3}=\left\{\left[\begin{array}{ccc}
a & b & 0 \tag{1}\\
c & a & b \\
0 & c & a
\end{array}\right]: a, b, c \in \mathbb{R}\right\}
$$

Each matrix in $\mathbb{B}^{3 \times 3}$ is called a tridiagonal matrix, since the entries along its main diagonal (i.e. $a_{i i}=a, i=1,2,3$), subdiagonal (i.e. $a_{(i+1) i}=c, i=1,2$), superdiagonal (i.e. $\left.a_{i(i+1)}=b, i=1,2\right)$ are fixed.
(a) Explain why $\mathbb{B}^{3 \times 3}$ is a subspace of 3×3 matrices.
(b) Find two different bases for $\mathbb{B}^{3 \times 3}$. What is the dimension of the subspace of tridiagonal matrices?
4.(*) (Section 4.2) Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{B}^{3 \times 3}$,

$$
T\left(\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right)=\left[\begin{array}{rrr}
a & b-c & 0 \\
a & a & b-c \\
0 & a & a
\end{array}\right]
$$

where $\mathbb{B}^{3 \times 3}$ denotes the set of 3×3 tridiagonal matrices defined in (1).
(a) Give a basis for the kernel of T.
(b) Give a basis for the range of T.
5. (Section 4.3) Solve questions 4.3.14, 4.3.20 $\left(^{*}\right), 4.3 .28\left(^{*}\right), 4.3 .32\left(^{*}\right)$ and 4.3.34 from the textbook.
6. (Section 4.4) Solve questions 4.4.10, 4.4.12 from the textbook.
7. (Section 4.4-5 and 4.7) Please first read the additional material about the dimension of a vector space and change of basis. Choose any two bases say $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{p}\right\}$ for a vector space V. The proof of Theorem 1 shows that B and C must contain equal number of vectors (i.e. $n=p$) or otherwise one of B, C contains redundant vectors. If you are having difficult time with the proof, you can skip it. The essential point is that there is a one-to-one relation between the coordinates relative to the bases B and C. In particular

$$
[v]_{B}=D[v]_{C}
$$

where D is the change of coordinates matrix from C to B,

$$
D=\left[\left[c_{1}\right]_{B}\left[c_{2}\right]_{B} \ldots\left[c_{n}\right]_{B}\right] .
$$

In class we saw that for the set of lower triangular matrices

$$
\mathbb{L}^{2 \times 2}=\left\{\left[\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right]: a, b, c \in \mathbb{R}\right\}
$$

two possible bases are

$$
\begin{gathered}
B_{L}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} \\
C_{L}=\left\{\left[\begin{array}{rr}
0 & 0 \\
-1 & 0
\end{array}\right],\left[\begin{array}{rr}
-1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]\right\}
\end{gathered}
$$

(a) Find the coordinates of the matrix

$$
L=\left[\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right]
$$

relative to B_{L}.
(b) Find the change of coordinates matrix

$$
D=\left[\left[\begin{array}{rr}
0 & 0 \\
-1 & 0
\end{array}\right]_{B_{L}}\left[\begin{array}{rr}
-1 & 0 \\
1 & 0
\end{array}\right]_{B_{L}}\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]_{B_{L}}\right] .
$$

from C_{L} to B_{L}.
(c) Find the coordinates of the matrix L in (a) relative to C_{L} by exploiting the relation

$$
[L]_{B_{L}}=D[L]_{C_{L}}
$$

You calculated the coordinate vector $[L]_{B_{L}}$ in (a) and the matrix D in (b). Therefore to find $[L]_{C_{L}}$ you have to solve a 3×3 linear system.
8. (Section 4.5) Solve questions 4.5.4, 4.5.14 from the textbook.
9. (Section 4.6) Solve questions 4.6.4, 4.6.10, 4.6.14, 4.6.20 $\left(^{*}\right.$) from the textbook.
10. (Section 4.6) The singular value decomposition of the matrix A is given by

$$
A=\overbrace{\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}}
\end{array}\right]}^{U} \overbrace{\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]}^{\sum} \overbrace{\left[\begin{array}{rrr}
0.4 \sqrt{2} & \frac{-1}{\sqrt{2}} & 0.3 \sqrt{2} \\
0.6 & 0 & -0.8 \\
0.4 \sqrt{2} & \frac{1}{\sqrt{2}} & 0.3 \sqrt{2}
\end{array}\right]}^{V^{T}} .
$$

where $V^{T} V=U^{T} U=I_{3}$. The orthogonality of U and V imply the linear independence of their columns. (You proved this in the second homework; see question 5.(b) in hw 2.)
(a) Is A invertible? Explain. (Hint : Try to find a nonzero vector v such that $A v=0$; pay attention to the rows of V^{T}.)
(b) Find a subset of the columns of V (or rows of V^{T}) that forms a basis for $\operatorname{Null}(A)$. (Hint : The set of columns of V is a basis for \mathbb{R}^{3}. You need to decide which columns of V are in the null space.)
(c) Find a subset of the columns of U that forms a basis for $\operatorname{Col}(A)$.
(Hint: The set of columns of U is a basis for \mathbb{R}^{3}. You need to decide which columns of U are in the column space.)
(d) Based on your answers to (b) and (c) determine the rank of A.

Remark: The singular value decomposition is widely used to determine the rank of a matrix as well as to find bases for the null and column spaces. In particular Matlab to determine the rank of a matrix computes its singular value decomposition.

