Dimension of a vector space: Two bases for a vector space V must consist of equal number of vectors as shown below. You can think each choice of basis as a selection of a coordinate system for V. The invariant property of V is the number of axes or the number of vectors in a basis, which we call the dimension of V.

Below the dimensions and bases are listed for the following vector spaces
Set of 2×2 matrices

$$
\mathbb{R}^{2 \times 2}=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]: a, b, c, d \in \mathbb{R}\right\}
$$

Set of 2×2 symmetric matrices

$$
S^{2 \times 2}=\left\{\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]: a, b, c \in \mathbb{R}\right\}
$$

Set of polynomials of degree at most n

$$
\mathbb{P}_{n}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}: a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

Set of continuous functions from \mathbb{R} to \mathbb{R} - C.

Vector Space	$\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$	Dimension
$\mathbb{R}^{2 \times 2}$	$\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$	4
$S^{2 \times 2}$	$\left\{1, x, x^{2}, \ldots, x^{n}\right\}$	3
\mathbb{P}_{n}	No finite basis	$\mathrm{n}+1$
\mathbf{C}		infinite dimensional

Theorem 1. Two bases for V consist of equal number of vectors.
Proof. Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for V. In class to justify the invariance of the number of elements in a basis for V, we introduced the coordinate mapping $T: V \rightarrow \mathbb{R}^{n}$

$$
T(v)=[v]_{B}
$$

where $[v]_{B}$ is the coordinate vector of v relative to B. The coordinate mapping T is linear and one-to-one. Also the kernel of T is $\{0\}$.

Suppose $C=\left\{c_{1}, c_{2}, \ldots, c_{n}, c_{n+1}, \ldots, c_{n+k}\right\}$ is another basis for V. We need to show that the vectors c_{n+1}, \ldots, c_{n+k} are redundant, i.e. the reduced set $C^{r}=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ spans V. Since C is a basis, the set C^{r} is linearly independent. It turns out that the image of the set

$$
T\left(C^{r}\right)=\left\{T\left(c_{1}\right), T\left(c_{2}\right), \ldots, T\left(c_{n}\right)\right\}
$$

is also linearly independent (Try to show this as an optional exercise). Indeed n linearly independent vectors in \mathbb{R}^{n} span \mathbb{R}^{n} meaning $T\left(C^{r}\right)$ is a basis for \mathbb{R}^{n}.

Any vector $v \in V$ is in the span of B, that is

$$
v=\alpha_{1} b_{1}+\alpha_{2} b_{2}+\cdots+\alpha_{n} b_{n}, \text { and }[v]_{B}=\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right] .
$$

But since $T\left(C^{r}\right)$ is a basis for \mathbb{R}^{n}, for some scalars $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$

$$
\begin{aligned}
T(v)=[v]_{B} & =\beta_{1} T\left(c_{1}\right)+\beta_{2} T\left(c_{2}\right)+\cdots+\beta_{n} T\left(c_{n}\right) \\
& =T\left(\beta_{1} c_{2}+\beta_{2} c_{2}+\cdots+\beta_{n} c_{n}\right)
\end{aligned}
$$

holds. But T is one-to-one (i.e. $T(v)=T(w) \Rightarrow v=w$), so

$$
v=\beta_{1} c_{2}+\beta_{2} c_{2}+\cdots+\beta_{n} c_{n} \Rightarrow[v]_{C^{r}}=\left[\begin{array}{r}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right]
$$

Let $D=\left[T\left(c_{1}\right) T\left(c_{2}\right) \ldots T\left(c_{n}\right)\right]$. Notice that D is an $n \times n$ matrix and invertible, because its columns are linearly independent. We deduce that

$$
[v]_{B}=\beta_{1} T\left(c_{1}\right)+\beta_{2} T\left(c_{2}\right)+\cdots+\beta_{n} T\left(c_{n}\right)=D[v]_{C^{r}} .
$$

This establishes a one-to-one relation between the coordinates relative to B and C^{r}.

Choose any $v \in V$ with the coordinate vector $[v]_{B}$. But then the coordinates relative to C is given by

$$
[v]_{C}=D^{-1}[v]_{B}=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right]
$$

We conclude that

$$
v=\beta_{1} c_{1}+\beta_{2} c_{2}+\ldots \beta_{n} c_{n} .
$$

Therefore $v \in \operatorname{span}\left(C^{r}\right)$. Since the above argument applies to any $v \in V$, the set C^{r} spans V and therefore is a basis. The elements c_{n+1}, \ldots, c_{n+k} of C are redundant, indeed depend on the first n vectors in C.

Above we assumed that C contains more vectors than B. If we assume C contains fewer vectors than B, then B contains more vectors. The above argument with the roles of B and C interchanged can be used to show that the extra vectors in B are redundant.

Remark: (Change of Basis briefly - section 4.7 in the textbook)

Let $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be bases for V and T be the coordinate mapping relative to B, i.e. $v \rightarrow[v]_{B}$. The proof above is based on the construction of the matrix

$$
D=\left[T\left(c_{1}\right) T\left(c_{2}\right) \ldots T\left(c_{n}\right)\right]=\left[\left[c_{1}\right]_{B}\left[c_{2}\right]_{B} \ldots\left[c_{n}\right]_{B}\right] .
$$

This matrix is called the change of coordinates matrix from C to B as

$$
[v]_{B}=D[v]_{C}
$$

which can be used to find the coordinate vector of v relative to B given the coordinates relative to C. Clearly the change of coordinates matrix from B to C is D^{-1} and

$$
[v]_{C}=\left(D^{-1}\right)[v]_{B}
$$

