
Dimension of a vector space: Two bases for a vector space V must consist of equal
number of vectors as shown below. You can think each choice of basis as a selection of a
coordinate system for V . The invariant property of V is the number of axes or the number
of vectors in a basis, which we call the dimension of V .

Below the dimensions and bases are listed for the following vector spaces
Set of 2× 2 matrices

R2×2 =

{[
a b
c d

]
: a, b, c, d ∈ R

}
Set of 2× 2 symmetric matrices

S2×2 =

{[
a b
b c

]
: a, b, c ∈ R

}

Set of polynomials of degree at most n

Pn = {a0 + a1x + a2x
2 + · · ·+ anx

n : a0, a1, . . . , an ∈ R}

Set of continuous functions from R to R - C.

Vector Space A Basis Dimension

R2×2

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
4

S2×2

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
3

Pn {1, x, x2, . . . , xn} n+1

C No finite basis infinite dimensional



Theorem 1. Two bases for V consist of equal number of vectors.

Proof. Let B = {b1, b2, . . . , bn} be a basis for V . In class to justify the invariance of the
number of elements in a basis for V , we introduced the coordinate mapping T : V → Rn

T (v) = [v]B

where [v]B is the coordinate vector of v relative to B. The coordinate mapping T is linear
and one-to-one. Also the kernel of T is {0}.

Suppose C = {c1, c2, . . . , cn, cn+1, . . . , cn+k} is another basis for V . We need to show that
the vectors cn+1, . . . , cn+k are redundant, i.e. the reduced set Cr = {c1, c2, . . . , cn} spans V .
Since C is a basis, the set Cr is linearly independent. It turns out that the image of the set

T (Cr) = {T (c1), T (c2), . . . , T (cn)}

is also linearly independent (Try to show this as an optional exercise). Indeed n linearly
independent vectors in Rn span Rn meaning T (Cr) is a basis for Rn.

Any vector v ∈ V is in the span of B, that is

v = α1b1 + α2b2 + · · ·+ αnbn, and [v]B =


α1

α2
...

αn

 .

But since T (Cr) is a basis for Rn, for some scalars β1, β2, . . . , βn

T (v) = [v]B = β1T (c1) + β2T (c2) + · · ·+ βnT (cn)

= T (β1c2 + β2c2 + · · ·+ βncn)

holds. But T is one-to-one (i.e. T (v) = T (w) ⇒ v = w), so

v = β1c2 + β2c2 + · · ·+ βncn ⇒ [v]Cr =


β1

β2
...

βn

 .

Let D = [T (c1) T (c2) . . . T (cn)]. Notice that D is an n× n matrix and invertible, because
its columns are linearly independent. We deduce that

[v]B = β1T (c1) + β2T (c2) + · · ·+ βnT (cn) = D[v]Cr .

This establishes a one-to-one relation between the coordinates relative to B and Cr.



Choose any v ∈ V with the coordinate vector [v]B. But then the coordinates relative to C
is given by

[v]C = D−1[v]B =


β1

β2
...

βn

 .

We conclude that
v = β1c1 + β2c2 + . . . βncn.

Therefore v ∈ span(Cr). Since the above argument applies to any v ∈ V , the set Cr spans
V and therefore is a basis. The elements cn+1, . . . , cn+k of C are redundant, indeed depend
on the first n vectors in C.

Above we assumed that C contains more vectors than B. If we assume C contains fewer
vectors than B, then B contains more vectors. The above argument with the roles of B and
C interchanged can be used to show that the extra vectors in B are redundant.

Remark: (Change of Basis briefly - section 4.7 in the textbook)
Let B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cn} be bases for V and T be the coordinate
mapping relative to B, i.e. v → [v]B. The proof above is based on the construction of the
matrix

D = [T (c1) T (c2) . . . T (cn)] = [ [c1]B [c2]B . . . [cn]B ].

This matrix is called the change of coordinates matrix from C to B as

[v]B = D[v]C ,

which can be used to find the coordinate vector of v relative to B given the coordinates
relative to C. Clearly the change of coordinates matrix from B to C is D−1 and

[v]C = (D−1)[v]B.


