Math 20F - Lecture C (Winter 2008)
 Homework 4

(Due on Friday, March 14th by 3pm)
*Please return your homeworks to the homework box on the 6th floor in the APM building.
*This homework covers sections 3.1-2, 5.1-3 and 6.1-5 from your textbook.

1. (Section 3.1-2) Find the determinants of the following matrices.
(a) $A_{1}=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$
(b) An orthogonal $n \times n$ matrix Q satisfying $Q^{T} Q=I_{n}$ (Note: The answer is not unique; there are two possible answers. Give both of the possible answers.)
(c) $A_{2}=\left[\begin{array}{rrrr}3 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 2 & 4 & -5 & 0 \\ 1 & -1 & 3 & 2\end{array}\right]\left[\begin{array}{rrrr}1 & -2 & 3 & 4 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1\end{array}\right]$
(d) The $n \times n$ matrix $R_{n}=\left[\begin{array}{ccccc}0 & 0 & \ldots & 0 & 1 \\ 0 & 0 & & 1 & 0 \\ & & . & & \\ 0 & 1 & & 0 & 0 \\ 1 & 0 & \ldots & 0 & 0\end{array}\right]$
2. (Section 3.1-2) Given a 3×3 matrix A with $\operatorname{det}(A)=4$. What are the determinants of $2 A, A^{2}, A^{T}$ and A^{-1} ?
3. (Section 5.1-3) Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

(a) Find the characteristic polynomial and eigenvalues of A.
(b) Find the eigenspace associated with each each eigenvalue.
(c) Is A diagonalizable? If yes, find an eigenvalue decomposition of the form $P \Lambda P^{-1}$. If no, explain why not.
(d) What happens to the entries of A^{k} as $k \rightarrow \infty$? In particular do all of the entries of A^{k} approach zero or do some of the entries of A^{k} diverge as $k \rightarrow \infty$? Explain.
4. (Section 5.1-3) Show that the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

is not diagonalizable.
5. (Section 6.1-2) Consider the matrix

$$
A=\left[\begin{array}{rrr}
2 & 1 & -1 \\
1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

(a) Find bases for the null and column space of A and show that these subspaces are orthogonal complements of each other.
(b) Write the vector $v=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ of the form $v=v_{r}+v_{n}$ so that $v_{r} \in \operatorname{Col}(A)$ and $v_{n} \in \operatorname{Null}(A)$.
6. (Section 6.2-4) Given the set of vectors

$$
\mathcal{B}=\left\{\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} .
$$

(a) Verify that \mathcal{B} is a basis for \mathbb{R}^{3}, but it is not orthogonal.
(b) Find an orthonormal basis by applying the Gram-Schmidt process to the basis \mathcal{B}.

7. (Section 6.5) Given

$$
A=\left[\begin{array}{rrr}
1 & 1 & 5 \\
1 & -1 & 1 \\
1 & 1 & 5
\end{array}\right], \quad \text { and } b=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

(a) Show that the system $A x=b$ is inconsistent.
(b) Find a least-squares solution \hat{x} such that $\|b-A \hat{x}\|$ is as small as possible. Is this leastsquares solution unique? (i.e. is there another \bar{x} such that $\|b-A \hat{x}\|=\|b-A \bar{x}\|$?)

