Contraction Mapping Thm

October 23, 2018

Theorem 0.1 (Contraction Mapping Thm). Let D be a closed subset of \mathbb{R}^{n}, and $g: D \rightarrow \mathbb{R}^{n}$ satisfy the following:

- $g(D) \subseteq D$.
- There exists $\gamma \in(0,1)$ such that

$$
\|g(x)-g(y)\|_{\infty} \leq \gamma\|x-y\|_{\infty} \quad \forall x, y \in D
$$

Theorem 0.2 (Contraction Mapping Thm). Let D be a closed subset of \mathbb{R}^{n}, and $g: D \rightarrow \mathbb{R}^{n}$ satisfy the following:

- $g(D) \subseteq D$.
- There exists $\gamma \in(0,1)$ such that

$$
\|g(x)-g(y)\|_{\infty} \leq \gamma\|x-y\|_{\infty} \quad \forall x, y \in D
$$

Then
(1) there exists a unique $x_{*} \in D$ such that $g\left(x_{*}\right)=x_{*}$,
(2) $\left\{x^{(k)}\right\}, x^{(k+1)}=g\left(x^{(k)}\right)$ converges to x_{*} for all $x^{(0)} \in D$.

Jacobi iteration to solve $A x=b$ (given $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$)
Based on $\quad A x=b \quad \Longleftrightarrow \quad x=-D^{-1}(L+U) x+D^{-1} b$

Jacobi iteration to solve $A x=b$ (given $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$)
Based on $\quad A x=b \quad \Longleftrightarrow \quad x=-D^{-1}(L+U) x+D^{-1} b$

$$
\mathbf{x}^{(\mathbf{k}+\mathbf{1})}=-\mathbf{D}^{-\mathbf{1}}(\mathbf{L}+\mathbf{U}) \mathbf{x}^{(\mathbf{k})}+\mathbf{D}^{-1} \mathbf{b}
$$

Jacobi iteration to solve $A x=b$

$$
\begin{aligned}
g(x)= & -D^{-1}(L+U) x+D^{-1} b \\
\|g(x)-g(y)\|_{\infty} & =\left\|D^{-1}(L+U)(x-y)\right\|_{\infty} \\
& \leq\left\|D^{-1}(L+U)\right\|_{\infty}\|x-y\|_{\infty}
\end{aligned}
$$

Jacobi iteration to solve $A x=b$

$$
\begin{aligned}
& \qquad \begin{array}{c}
g(x)=-D^{-1}(L+U) x+D^{-1} b \\
\|g(x)-g(y)\|_{\infty} \\
=\left\|D^{-1}(L+U)(x-y)\right\|_{\infty} \\
\leq\left\|D^{-1}(L+U)\right\|_{\infty}\|x-y\|_{\infty}
\end{array} \\
& \text { If }\left|a_{j j}\right|>\sum_{k=1, k \neq j}^{n}\left|a_{j k}\right|, j=1, \ldots, n \text {, then }\left\|D^{-1}(L+U)\right\|_{\infty}<1 .
\end{aligned}
$$

Jacobi iteration to solve $A x=b$

$$
\begin{gathered}
\qquad \begin{array}{c}
g(x)=-D^{-1}(L+U) x+D^{-1} b \\
\|g(x)-g(y)\|_{\infty} \\
=\left\|D^{-1}(L+U)(x-y)\right\|_{\infty} \\
\leq\left\|D^{-1}(L+U)\right\|_{\infty}\|x-y\|_{\infty} \\
\text { If }\left|a_{j j}\right|>\sum_{k=1, k \neq j}^{n}\left|a_{j k}\right|, j=1, \ldots, n, \text { then }\left\|D^{-1}(L+U)\right\|_{\infty}<1 .
\end{array} .
\end{gathered}
$$

(2) g is a contraction on $g\left(\bar{B}\left(x_{*}, \varepsilon\right)\right)$ with $\gamma=\left\|D^{-1}(L+U)\right\|_{\infty}$.

Jacobi iteration to solve $A x=b$

$$
\begin{aligned}
& \mathbf{x}^{(\mathbf{k}+\mathbf{1})}=-\mathbf{D}^{-\mathbf{1}}(\mathbf{L}+\mathbf{U}) \mathbf{x}^{(\mathbf{k})}+\mathbf{D}^{-\mathbf{1}} \mathbf{b} \\
& \text { If }\left|a_{j j}\right|>\sum_{k=1, k \neq j}^{n}\left|a_{j k}\right|, j=1, \ldots, n \text {, then } \\
& \left\{x^{(k)}\right\} \text { converges to } x_{*} \text { for all } x^{(0)} .
\end{aligned}
$$

