Contraction Mapping Thm

October 23, 2018

Theorem 0.1 (Contraction Mapping Thm). Let D be a closed subset of \mathbb{R}^n , and $g: D \to \mathbb{R}^n$ satisfy the following:

- $g(D) \subseteq D$.
- There exists $\gamma \in (0, 1)$ such that

 $\|g(x) - g(y)\|_{\infty} \le \gamma \|x - y\|_{\infty} \quad \forall x, y \in D.$

Theorem 0.2 (Contraction Mapping Thm). Let D be a closed subset of \mathbb{R}^n , and $g: D \to \mathbb{R}^n$ satisfy the following:

- $g(D) \subseteq D$.
- There exists $\gamma \in (0, 1)$ such that

$$||g(x) - g(y)||_{\infty} \leq \gamma ||x - y||_{\infty} \quad \forall x, y \in D.$$

Then

- (1) there exists a unique $x_* \in D$ such that $g(x_*) = x_*$,
- (2) $\{x^{(k)}\}, x^{(k+1)} = g(x^{(k)})$ converges to x_* for all $x^{(0)} \in D$.

Jacobi iteration to solve Ax = b (given $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$)

Based on $Ax = b \iff x = -D^{-1}(L+U)x + D^{-1}b$

Jacobi iteration to solve Ax = b (given $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$) Based on $Ax = b \iff x = -D^{-1}(L+U)x + D^{-1}b$

$$\mathbf{x}^{(\mathbf{k}+1)} = -\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U})\mathbf{x}^{(\mathbf{k})} + \mathbf{D}^{-1}\mathbf{b}$$

$$g(x) = -D^{-1}(L+U)x + D^{-1}b$$
$$\|g(x) - g(y)\|_{\infty} = \|D^{-1}(L+U)(x-y)\|_{\infty}$$
$$\leq \|D^{-1}(L+U)\|_{\infty}\|x-y\|_{\infty}$$

$$g(x) = -D^{-1}(L+U)x + D^{-1}b$$

$$\|g(x) - g(y)\|_{\infty} = \|D^{-1}(L+U)(x-y)\|_{\infty}$$

$$\leq \|D^{-1}(L+U)\|_{\infty}\|x-y\|_{\infty}$$

If
$$|a_{jj}| > \sum_{k=1, k \neq j}^{n} |a_{jk}|, \ j = 1, \dots, n$$
, then $||D^{-1}(L+U)||_{\infty} < 1$.

(1)
$$g(\overline{B}(x_*,\varepsilon)) \subseteq \overline{B}(x_*,\varepsilon)$$
 for any $\varepsilon > 0$.

$$g(x) = -D^{-1}(L+U)x + D^{-1}b$$

$$\|g(x) - g(y)\|_{\infty} = \|D^{-1}(L+U)(x-y)\|_{\infty}$$

$$\leq \|D^{-1}(L+U)\|_{\infty}\|x-y\|_{\infty}$$

If
$$|a_{jj}| > \sum_{k=1,k\neq j}^{n} |a_{jk}|, \ j = 1, \dots, n$$
, then $||D^{-1}(L+U)||_{\infty} < 1$.

(2) g is a contraction on $g(\overline{B}(x_*,\varepsilon))$ with $\gamma = \|D^{-1}(L+U)\|_{\infty}$.

$$\mathbf{x}^{(k+1)} \hspace{.1in} = \hspace{.1in} -\mathbf{D}^{-1}(\mathbf{L}+\mathbf{U})\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$

If
$$|a_{jj}| > \sum_{k=1, k \neq j}^{n} |a_{jk}|, \ j = 1, \dots, n$$
, then

 $\{x^{(k)}\}$ converges to x_* for all $x^{(0)}$.