Jacobi's Method

(Reminders from Lecture 14)

The Algorithm

$A^{(0)} \leftarrow A, k \leftarrow 0$
while $\sum_{j, \ell, j \neq \ell}\left[a_{j \ell}^{(k)}\right]^{2}>\varepsilon$ do
Find $p, q \in\{1,2, \ldots, n\}, p \neq q$ such that

$$
\begin{gathered}
\left|a_{p q}^{(k)}\right|=\max _{j, \ell, j \neq \ell}\left|a_{j \ell}^{(k)}\right| \\
A^{(k+1)} \leftarrow R^{(p q)}\left(\theta_{k}\right)^{T} A^{(k)} R^{(p q)}\left(\theta_{k}\right), k \leftarrow k+1
\end{gathered}
$$

end while

- $A, A^{(k)}$ are similar for all k with the same eigenvalues

Plane Rotation Matrices

$$
\begin{aligned}
& R^{(p q)}(\theta)=\left[\begin{array}{lllll}
I & & & & \\
& c & & s & \\
& & l & & \\
& -s & & c & \\
& & & & I
\end{array}\right], \begin{array}{l}
c:=\cos (\theta) \\
s:=\sin (\theta)
\end{array} \\
& \quad c-(p, p) \text { entry } \\
& \\
& \\
& \\
&
\end{aligned}
$$

Plane Rotation Matrices

$$
\begin{aligned}
& R^{(p q)}(\theta)=\left[\begin{array}{lllll}
l & & & & \\
& c & & s & \\
& & l & & \\
& -s & & c & \\
& & & & I
\end{array}\right], \quad \begin{array}{l}
c:=\cos (\theta) \\
s:=\sin (\theta)
\end{array} \\
& \quad c-(p, p) \text { entry } \\
& \\
& \\
& \\
&
\end{aligned}
$$

- $R^{(p q)}(\theta) v$ rotates the p th, q th components of v by θ in clock-wise direction.
- $R^{(p q)}(\theta) \in \mathbb{R}^{n \times n}$ is orthogonal.

Plane Rotation Matrices

$$
\begin{aligned}
& \left.R^{(p q)}(\theta)=\left[\begin{array}{ccccc}
I & & & & \\
& c & & s & \\
& & l & & \\
& -s & & c & \\
& & & & I
\end{array}\right], \quad \begin{array}{l}
\\
\quad c-(p, p) \text { entry } \\
\\
\\
\\
\\
\\
\end{array}\right]-(q, q) \text { entros }(\theta)
\end{aligned}
$$

- $R^{(p q)}(\theta) v$ rotates the p th, q th components of v by θ in clock-wise direction.
- $R^{(p q)}(\theta) \in \mathbb{R}^{n \times n}$ is orthogonal.

Task to do - find θ such that (p, q) entry of $B:=R^{(p q)}(\theta)^{T} A R^{(p q)}(\theta)$ is 0 .

