Reduction into Tridiagonal Form (Reminders from Lecture 15)

Task to do

$$
A \in \mathbb{R}^{n \times n}, A^{T}=A
$$

Find orthogonal $Q_{1}, \ldots, Q_{n-2} \in \mathbb{R}^{n \times n}$ such that

$$
Q_{n-2}^{T} \ldots, Q_{1}^{T} A Q_{1} \ldots Q_{n-2}=T
$$

where $T \in \mathbb{R}^{n \times n}$ is tridiagonal.

Task to do

$$
\underbrace{\left[\begin{array}{llll}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right]}_{A}
$$

Task to do

$$
\underbrace{\left[\begin{array}{cccc}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right]}_{A} \mapsto \underbrace{\left[\begin{array}{cccc}
x & x & 0 & 0 \\
x & x & x & x \\
0 & x & x & x \\
0 & x & x & x
\end{array}\right]}_{Q_{1}^{T} A Q_{1}}
$$

Task to do

$$
\underbrace{\left[\begin{array}{cccc}
x & x & x & x \\
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{array}\right]}_{A} \mapsto \underbrace{\left[\begin{array}{cccc}
x & x & 0 & 0 \\
x & x & x & x \\
0 & x & x & x \\
0 & x & x & x
\end{array}\right]}_{Q_{1}^{\top} A Q_{1}} \mapsto \underbrace{\left[\begin{array}{cccc}
x & x & 0 & 0 \\
x & x & x & 0 \\
0 & x & x & x \\
0 & 0 & x & x
\end{array}\right]}_{Q_{2}^{T} Q_{1}^{\top} A Q_{1} Q_{2}}
$$

Householder Reflectors

```
For a number of years it seemed that the Givens' process
was likely to prove the most efficient method of reducing
    a matrix to tri-diagonal form, but in 1958 Householder
    suggested that this reduction could be performed more
        efficiently using the elementary Hermitian matrices
        rather than plane rotations.
```

The Algebraic Eigenvalue Problem (1965), J. H. Wilkinson

Householder Reflectors

- The key to this reduction is, for a given $v \in \mathbb{R}^{n}$, finding an orthogonal $Q \in \mathbb{R}^{n \times n}$ such that

$$
Q v=\left[\begin{array}{c}
\pm\|v\|_{2} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Householder Reflectors

- The key to this reduction is, for a given $v \in \mathbb{R}^{n}$, finding an orthogonal $Q \in \mathbb{R}^{n \times n}$ such that

$$
Q v=\left[\begin{array}{c}
\pm\|v\|_{2} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

- More generally, given $a, b \in \mathbb{R}^{n}$ satisfying $\|a\|_{2}=\|b\|_{2}$, find orthogonal $Q \in \mathbb{R}^{n \times n}$ such that

$$
Q a=b .
$$

Orthogonal Projection

Let S be a subspace of \mathbb{R}^{n}. Every vector $v \in \mathbb{R}^{n}$ can be decomposed into

$$
v=v_{s}+v_{s^{\perp}} \quad \exists v_{s} \in S, \exists v_{s^{\perp}} \in S^{\perp}
$$

in a unique way.
v_{s} is called the orthogonal projection of v onto S.

Orthogonal Projection

Suppose

$$
S=\operatorname{span}\{d\} \quad \exists d \in \mathbb{R}^{n}, d \neq 0
$$

Orthogonal Projection

Suppose

$$
S=\operatorname{span}\{d\} \quad \exists d \in \mathbb{R}^{n}, d \neq 0
$$

Then, for any $v \in \mathbb{R}^{n}$, we have

$$
v=\underbrace{\alpha d}_{v_{s}}+v_{s^{\perp}}
$$

Orthogonal Projection

Suppose

$$
S=\operatorname{span}\{d\} \quad \exists d \in \mathbb{R}^{n}, d \neq 0
$$

Then, for any $v \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
v & =\underbrace{\alpha d}_{v_{s}}+v_{s^{\perp}} \\
d^{T} v & =\alpha d^{T} d \Longrightarrow \alpha=\frac{d^{T} v}{d^{T} d}
\end{aligned}
$$

Orthogonal Projection

Suppose

$$
S=\operatorname{span}\{d\} \quad \exists d \in \mathbb{R}^{n}, d \neq 0
$$

Then, for any $v \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
v & =\underbrace{\alpha d}_{v_{s}}+v_{s^{\perp}} \\
d^{T} v & =\alpha d^{T} d \Longrightarrow \alpha=\frac{d^{T} v}{d^{T} d}
\end{aligned}
$$

$$
v_{s}=d\left(\frac{d^{T} v}{d^{T} d}\right)=\left(\frac{d d^{T}}{d^{T} d}\right) v
$$

