The QR Algorithm

The Algorithm

$$T^{(0)} \leftarrow T, k \leftarrow 0$$

for $k = 0, 1, 2, ...$ do
Choose a shift μ_{k+1} .
Compute a QR factorization
 $T^{(k)} - \mu_{k+1}I_n = \widehat{Q}^{(k+1)}\widehat{R}^{(k+1)}.$

$$T^{(k+1)} \leftarrow \widehat{R}^{(k+1)} \widehat{Q}^{(k+1)} + \mu_{k+1} I_n$$
 end for

•
$$T^{(k)}, T^{(k+1)}$$
 are orthogonally similar for all k

Given $T^{(k)}$ is tridiagonal, so is $T^{(k+1)}$.

► In the QR factorization

$$T^{(k)} - \mu_{k+1} I_n = \widehat{Q}^{(k+1)} \widehat{R}^{(k+1)},$$

 $\widehat{R}^{(k+1)}$ is bidiagonal.

Given $T^{(k)}$ is tridiagonal, so is $T^{(k+1)}$.

In the QR factorization

$$T^{(k)} - \mu_{k+1} I_n = \widehat{Q}^{(k+1)} \widehat{R}^{(k+1)},$$

 $\widehat{R}^{(k+1)}$ is bidiagonal.

• $\left[\widehat{R}^{(k+1)}\right]^{-1}$ is also bidiagonal.

Given $T^{(k)}$ is tridiagonal, so is $T^{(k+1)}$.

In the QR factorization

$$T^{(k)} - \mu_{k+1} I_n = \widehat{Q}^{(k+1)} \widehat{R}^{(k+1)},$$

 $\widehat{R}^{(k+1)}$ is bidiagonal.

•
$$\left[\widehat{R}^{(k+1)}\right]^{-1}$$
 is also bidiagonal.

•
$$\widehat{Q}^{(k+1)} = (T^{(k)} - \mu_{k+1}I_n) \left[\widehat{R}^{(k+1)}\right]^{-1}$$
 is tridiagonal.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Given $T^{(k)}$ is tridiagonal, so is $T^{(k+1)}$.

In the QR factorization

$$T^{(k)} - \mu_{k+1} I_n = \widehat{Q}^{(k+1)} \widehat{R}^{(k+1)},$$

 $\widehat{R}^{(k+1)}$ is bidiagonal.

•
$$\left[\widehat{R}^{(k+1)}\right]^{-1}$$
 is also bidiagonal.

•
$$\widehat{Q}^{(k+1)} = (T^{(k)} - \mu_{k+1}I_n) \left[\widehat{R}^{(k+1)}\right]^{-1}$$
 is tridiagonal.

•
$$T^{(k+1)} = \widehat{R}^{(k+1)}\widehat{Q}^{(k+1)} + \mu_{k+1}I_n$$
 is tridiagonal.

Choice of the Shift

Rayleigh shift

$$\mu_{k+1} = t_{nn}^{(k)}$$

Wilkinson shift

$$\mu_{k+1}$$
 = eigenvalue of $T^{(k)}(n-1:n, n-1:n)$ closest to $t_{nn}^{(k)}$

<ロ> <0</p>