The QR Algorithm

The Algorithm

$T^{(0)} \leftarrow T, k \leftarrow 0$
for $k=0,1,2, \ldots$ do
Choose a shift μ_{k+1}.
Compute a QR factorization

$$
T^{(k)}-\mu_{k+1} I_{n}=\widehat{Q}^{(k+1)} \widehat{R}^{(k+1)}
$$

$$
T^{(k+1)} \leftarrow \widehat{R}^{(k+1)} \widehat{Q}^{(k+1)}+\mu_{k+1} I_{n}
$$

end for

- $T^{(k)}, T^{(k+1)}$ are orthogonally similar for all k

Preserving Tridiagonal Structure

Given $T^{(k)}$ is tridiagonal, so is $T^{(k+1)}$.

- In the QR factorization

$$
T^{(k)}-\mu_{k+1} I_{n}=\widehat{Q}^{(k+1)} \widehat{R}^{(k+1)},
$$

$\widehat{R}^{(k+1)}$ is bidiagonal.

Preserving Tridiagonal Structure

Given $T^{(k)}$ is tridiagonal, so is $T^{(k+1)}$.

- In the QR factorization

$$
T^{(k)}-\mu_{k+1} I_{n}=\widehat{Q}^{(k+1)} \widehat{R}^{(k+1)},
$$

$\widehat{R}^{(k+1)}$ is bidiagonal.

- $\left[\widehat{R}^{(k+1)}\right]^{-1}$ is also bidiagonal.

Preserving Tridiagonal Structure

Given $T^{(k)}$ is tridiagonal, so is $T^{(k+1)}$.

- In the QR factorization

$$
T^{(k)}-\mu_{k+1} I_{n}=\widehat{Q}^{(k+1)} \widehat{R}^{(k+1)},
$$

$\widehat{R}^{(k+1)}$ is bidiagonal.

- $\left[\widehat{R}^{(k+1)}\right]^{-1}$ is also bidiagonal.
- $\widehat{Q}^{(k+1)}=\left(T^{(k)}-\mu_{k+1} I_{n}\right)\left[\widehat{R}^{(k+1)}\right]^{-1}$ is tridiagonal.

Preserving Tridiagonal Structure

Given $T^{(k)}$ is tridiagonal, so is $T^{(k+1)}$.

- In the QR factorization

$$
T^{(k)}-\mu_{k+1} I_{n}=\widehat{Q}^{(k+1)} \widehat{R}^{(k+1)},
$$

$\widehat{R}^{(k+1)}$ is bidiagonal.

- $\left[\widehat{R}^{(k+1)}\right]^{-1}$ is also bidiagonal.
- $\widehat{Q}^{(k+1)}=\left(T^{(k)}-\mu_{k+1} I_{n}\right)\left[\widehat{R}^{(k+1)}\right]^{-1}$ is tridiagonal.
- $T^{(k+1)}=\widehat{R}^{(k+1)} \widehat{Q}^{(k+1)}+\mu_{k+1} I_{n}$ is tridiagonal.

Choice of the Shift

Rayleigh shift

$$
\mu_{k+1}=t_{n n}^{(k)}
$$

Wilkinson shift
$\mu_{k+1}=$ eigenvalue of $T^{(k)}(n-1: n, n-1: n)$ closest to $t_{n n}^{(k)}$

