Theorem of Alternation

<□ > < @ > < E > < E > E 9 < @</p>

Definition

The Minimax Polynomial for *f* of Degree *n* Given $n \in \mathbb{N}$ and $f \in C[a, b]$, the polynomial $p_* \in \mathcal{P}_n$ such that

$$\|f-p_*\|_{\infty} = \min_{p_n\in\mathcal{P}_n}\|f-p_n\|_{\infty}$$

Definition

The Minimax Polynomial for *f* of Degree *n* Given $n \in \mathbb{N}$ and $f \in C[a, b]$, the polynomial $p_* \in \mathcal{P}_n$ such that

$$\|f - p_*\|_{\infty} = \min_{p_n \in \mathcal{P}_n} \|f - p_n\|_{\infty}$$

= $\min_{p_n \in \mathcal{P}_n} \max_{x \in [a,b]} |f(x) - p_n(x)|$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへ⊙

Theorem of Alternation

Theorem

Let $f \in C[a, b]$, $p \in \mathcal{P}_n$. The following are equivalent:

- (1) p is a minimax polynomial for f of degree n.
- (2) There exist $x_0 < x_1 < \cdots < x_{n+1}$ contained in [a, b] such that

(a)
$$f(x_j) - p(x_j) = -\{f(x_{j+1}) - p(x_{j+1})\}$$
 for $j = 0, 1, ..., n$,
(b) $|f(x_j) - p(x_j)| = ||f - p||_{\infty}$ for $j = 0, 1, ..., n + 1$.

Suppose *f* has monotonically increasing derivative on [*a*, *b*] e.g. $f(t) = e^{t^2}$ on [0, 1]

Find the minimax polynomial p_* of degree 1

The solution should depend on the secant and tangent lines

$$s(t) = \frac{f(b) - f(a)}{b - a}(t - a) + f(a), \quad \ell(t) = \frac{f(b) - f(a)}{b - a}(t - c) + f(c)$$

where $c \in (a, b)$ is such that $f'(c) = (f(b) - f(a))/(b_{\overline{a}}, a)$.

The solution should depend on the secant and tangent lines

$$s(t) = \frac{f(b) - f(a)}{b - a}(t - a) + f(a), \quad \ell(t) = \frac{f(b) - f(a)}{b - a}(t - c) + f(c)$$

where $c \in (a, b)$ is such that f'(c) = (f(b) - f(a))/(b = a).

The solution should depend on the secant and tangent lines

$$s(t) = \frac{f(b) - f(a)}{b - a}(t - a) + f(a), \quad \ell(t) = \frac{f(b) - f(a)}{b - a}(t - c) + f(c)$$

where $c \in (a, b)$ is such that $f'(c) = (f(b) - f(a))/(b - a)$.

=

The solution should depend on the secant and tangent lines

$$s(t) = \frac{f(b) - f(a)}{b - a}(t - a) + f(a), \quad \ell(t) = \frac{f(b) - f(a)}{b - a}(t - c) + f(c)$$

where $c \in (a, b)$ is such that $f'(c) = (f(b) - f(a))/(b - a)$.

=

The solution should depend on the secant and tangent lines

$$s(t) = \frac{f(b) - f(a)}{b - a}(t - a) + f(a), \quad \ell(t) = \frac{f(b) - f(a)}{b - a}(t - c) + f(c)$$

where $c \in (a, b)$ is such that $f'(c) = (f(b) - f(a))/(b - a)$.

=

The solution should depend on the secant and tangent lines

$$s(t) = \frac{f(b) - f(a)}{b - a}(t - a) + f(a), \quad \ell(t) = \frac{f(b) - f(a)}{b - a}(t - c) + f(c)$$

where $c \in (a, b)$ is such that $f'(c) = (f(b) - f(a))/(b - a)$.

3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □