Theorem of Alternation

Definition

The Minimax Polynomial for f of Degree n

Given $n \in \mathbb{N}$ and $f \in C[a, b]$, the polynomial $p_{*} \in \mathcal{P}_{n}$ such that

$$
\left\|f-p_{*}\right\|_{\infty}=\min _{p_{n} \in \mathcal{P}_{n}}\left\|f-p_{n}\right\|_{\infty}
$$

Definition

The Minimax Polynomial for f of Degree n

Given $n \in \mathbb{N}$ and $f \in C[a, b]$, the polynomial $p_{*} \in \mathcal{P}_{n}$ such that

$$
\begin{aligned}
\left\|f-p_{*}\right\|_{\infty} & =\min _{p_{n} \in \mathcal{P}_{n}}\left\|f-p_{n}\right\|_{\infty} \\
& =\min _{p_{n} \in \mathcal{P}_{n}} \max _{x \in[a, b]}\left|f(x)-p_{n}(x)\right|
\end{aligned}
$$

Theorem of Alternation

Theorem

Let $f \in C[a, b], p \in \mathcal{P}_{n}$. The following are equivalent:
(1) p is a minimax polynomial for f of degree n.
(2) There exist $x_{0}<x_{1}<\cdots<x_{n+1}$ contained in [a,b] such that
(a) $f\left(x_{j}\right)-p\left(x_{j}\right)=-\left\{f\left(x_{j+1}\right)-p\left(x_{j+1}\right)\right\}$ for $j=0,1, \ldots, n$, (b) $\left|f\left(x_{j}\right)-p\left(x_{j}\right)\right|=\|f-p\|_{\infty}$ for $j=0,1, \ldots, n+1$.

An Example

Suppose f has monotonically increasing derivative on $[a, b]$ e.g. $f(t)=e^{t^{2}}$ on $[0,1]$

Find the minimax polynomial p_{*} of degree 1

$$
\exp \left(t^{2}\right)
$$

An Example

$\exp \left(\mathrm{t}^{2}\right)$

The solution should depend on the secant and tangent lines
$s(t)=\frac{f(b)-f(a)}{b-a}(t-a)+f(a), \quad \ell(t)=\frac{f(b)-f(a)}{b-a}(t-c)+f(c)$
where $c \in(a, b)$ is such that $f^{\prime}(c)=(f(b)-f(a))(b-a)$.

An Example

$\exp \left(\mathrm{t}^{2}\right)$

The solution should depend on the secant and tangent lines
$s(t)=\frac{f(b)-f(a)}{b-a}(t-a)+f(a), \quad \ell(t)=\frac{f(b)-f(a)}{b-a}(t-c)+f(c)$
where $c \in(a, b)$ is such that $f^{\prime}(c)=(f(b)-f(a))(b-a)$.

An Example

$\exp \left(\mathrm{t}^{2}\right)$

The solution should depend on the secant and tangent lines
$s(t)=\frac{f(b)-f(a)}{b-a}(t-a)+f(a), \quad \ell(t)=\frac{f(b)-f(a)}{b-a}(t-c)+f(c)$
where $c \in(a, b)$ is such that $f^{\prime}(c)=(f(b)-f(a))(b-a)$.

An Example

$\exp \left(\mathrm{t}^{2}\right)$

The solution should depend on the secant and tangent lines
$s(t)=\frac{f(b)-f(a)}{b-a}(t-a)+f(a), \quad \ell(t)=\frac{f(b)-f(a)}{b-a}(t-c)+f(c)$
where $c \in(a, b)$ is such that $f^{\prime}(c)=(f(b)-f(a))(b-a)$.

An Example

$\exp \left(\mathrm{t}^{2}\right)$

The solution should depend on the secant and tangent lines
$s(t)=\frac{f(b)-f(a)}{b-a}(t-a)+f(a), \quad \ell(t)=\frac{f(b)-f(a)}{b-a}(t-c)+f(c)$
where $c \in(a, b)$ is such that $f^{\prime}(c)=(f(b)-f(a))(b-a)$.

An Example

$\exp \left(\mathrm{t}^{2}\right)$

The solution should depend on the secant and tangent lines
$s(t)=\frac{f(b)-f(a)}{b-a}(t-a)+f(a), \quad \ell(t)=\frac{f(b)-f(a)}{b-a}(t-c)+f(c)$
where $c \in(a, b)$ is such that $f^{\prime}(c)=(f(b)-f(a)) \not(b-a)$.

An Example

$\exp \left(t^{2}\right)$

Letting p be the green line, $A:=\|f-p\|_{\infty}$, and

An Example

$\exp \left(\mathrm{t}^{2}\right)$

Letting p be the green line, $A:=\|f-p\|_{\infty}$, and Setting $x_{0}=a, x_{1}=c, x_{2}=b$, we have

$$
f\left(x_{0}\right)-p\left(x_{0}\right)=A, f\left(x_{1}\right)-p\left(x_{1}\right)=-A, f\left(x_{2}\right)-p\left(x_{2}\right)=A
$$

