Roots of Orthogonal Polynomials

Orthogonal Polynomials

Definition

A system of orthogonal polynomials $\varphi_{0}, \ldots, \varphi_{n}$ in $L_{w}^{2}(a, b)$ is such that (i) φ_{j} is exactly of degree j, and

$$
\text { (ii) }\left\langle\varphi_{j}, \varphi_{k}\right\rangle=0 \text { for } k, j \in\{0,1, \ldots, n\} \text { s.t. } k \neq j \text {. }
$$

- $\varphi_{0}(x)=1, \varphi_{1}(x)=x-1 / 2, \varphi_{2}(x)=x^{2}-x+1 / 6$ in $L_{w}^{2}(0,1)$ with $w(x) \equiv 1$
- $\varphi_{n}(x)=\cos (n \cdot \arccos (x)) n=0,1,2, \ldots$ in $L_{w}^{2}(-1,1)$ with $w(x)=1 / \sqrt{1-x^{2}}$

Roots

Theorem
Let $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}$ be a system of orthogonal polynomials in $L_{w}^{2}(a, b)$. Then all roots of $\phi_{j}, j \geq 1$ are simple, and lie in (a, b).

Roots

Theorem

Let $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}$ be a system of orthogonal polynomials in $L_{w}^{2}(a, b)$. Then all roots of $\phi_{j}, j \geq 1$ are simple, and lie in (a, b).

Polynomial	Space	Roots
$\varphi_{1}(x)=x-\frac{1}{2}$	$L_{w}^{2}(0,1), w(x) \equiv 1$	$\frac{1}{2}$
$\varphi_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$	$L_{w}^{2}(-1,1), w(x) \equiv 1$	$\pm \frac{1}{\sqrt{3}}$
$\varphi_{3}(x)=4 x^{3}-3 x$	$L_{w}^{2}(-1,1), w(x)=\frac{1}{\sqrt{1-x^{2}}}$	$0, \pm \frac{\sqrt{3}}{2}$

Proof

Suppose $\eta_{1}, \ldots, \eta_{k}$ are the (distinct) points in (a, b) where φ_{j} changes sign.

Proof

Suppose $\eta_{1}, \ldots, \eta_{k}$ are the (distinct) points in (a, b) where φ_{j} changes sign.

If $k=0$ (that is φ_{j} does not change sign on (a, b)),

$$
0=\left\langle\varphi_{j}, 1\right\rangle=\int_{a}^{b} w(x) \varphi_{j}(x) d x
$$

Proof

Suppose $\eta_{1}, \ldots, \eta_{k}$ are the (distinct) points in (a, b) where φ_{j} changes sign.

If $k=0$ (that is φ_{j} does not change sign on (a, b)),

$$
0=\left\langle\varphi_{j}, 1\right\rangle=\int_{a}^{b} w(x) \varphi_{j}(x) d x
$$

yields a contradiction, as the last integral cannot be zero (i.e., $w(x) \varphi_{j}(x)>0 \forall x \in(a, b)$ or $w(x) \varphi_{j}(x)<0 \forall x \in(a, b)$ excluding possibly x that are the roots of φ_{j}).

Proof

Suppose $k<j$. Letting $\phi(x):=\prod_{\ell=1}^{k}\left(x-\eta_{\ell}\right)$, we have

$$
0=\left\langle\varphi_{j}, \phi\right\rangle=\int_{a}^{b} w(x) \varphi_{j}(x) \phi(x) d x
$$

Proof

Suppose $k<j$. Letting $\phi(x):=\prod_{\ell=1}^{k}\left(x-\eta_{\ell}\right)$, we have

$$
0=\left\langle\varphi_{j}, \phi\right\rangle=\int_{a}^{b} w(x) \varphi_{j}(x) \phi(x) d x
$$

But again the last integral cannot be zero, so we end up with a contradiction.
$\left(w(x) \varphi_{j}(x) \phi(x)>0 \forall x \in(a, b)\right.$ or $w(x) \varphi_{j}(x) \phi(x)<0 \forall x \in(a, b)$ excluding possibly x that are the roots of $\left.\varphi_{j}, \phi\right)$.

Proof

- Consequently, $k=j$, that is φ_{j} must change sign at j distinct points $\eta_{1}, \ldots, \eta_{j} \in(a, b)$.

Proof

- Consequently, $k=j$, that is φ_{j} must change sign at j distinct points $\eta_{1}, \ldots, \eta_{j} \in(a, b)$.
- $\eta_{1}, \ldots, \eta_{j} \in(a, b)$ must consist of all roots of φ_{j}, all simple.

