Roots of Orthogonal Polynomials

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Orthogonal Polynomials

Definition

A system of orthogonal polynomials $\varphi_0, \ldots, \varphi_n$ in $L^2_w(a, b)$ is such that (i) φ_j is exactly of degree *j*, and

(ii)
$$\langle \varphi_j, \varphi_k \rangle = 0$$
 for $k, j \in \{0, 1, \dots, n\}$ s.t. $k \neq j$.

•
$$\varphi_0(x) = 1$$
, $\varphi_1(x) = x - 1/2$, $\varphi_2(x) = x^2 - x + 1/6$
in $L^2_w(0, 1)$ with $w(x) \equiv 1$

•
$$\varphi_n(x) = \cos(n \cdot \arccos(x)) \ n = 0, 1, 2, ...$$

in $L^2_w(-1, 1)$ with $w(x) = 1/\sqrt{1 - x^2}$

Roots

Theorem

Let $\varphi_0, \varphi_1, \ldots, \varphi_n$ be a system of orthogonal polynomials in $L^2_w(a, b)$. Then all roots of $\phi_j, j \ge 1$ are simple, and lie in (a, b).

Roots

Theorem

Let $\varphi_0, \varphi_1, \ldots, \varphi_n$ be a system of orthogonal polynomials in $L^2_w(a, b)$. Then all roots of $\phi_j, j \ge 1$ are simple, and lie in (a, b).

Polynomial	Space	Roots
$\varphi_1(x)=x-\tfrac{1}{2}$	$L^2_w(0,1), w(x) \equiv 1$	$\frac{1}{2}$
$\varphi_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$	$L^2_w(-1,1), w(x) \equiv 1$	$\pm \frac{1}{\sqrt{3}}$
$\varphi_3(x) = 4x^3 - 3x$	$L^2_w(-1,1), w(x) = \frac{1}{\sqrt{1-x^2}}$	$0,\pm \frac{\sqrt{3}}{2}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose η_1, \ldots, η_k are the (distinct) points in (a, b) where φ_j changes sign.

Suppose η_1, \ldots, η_k are the (distinct) points in (a, b) where φ_j changes sign.

If k = 0 (that is φ_j does not change sign on (a, b)),

$$0 = \langle \varphi_j, 1 \rangle = \int_a^b w(x) \varphi_j(x) dx$$

Suppose η_1, \ldots, η_k are the (distinct) points in (a, b) where φ_j changes sign.

If k = 0 (that is φ_i does not change sign on (a, b)),

$$0 = \langle \varphi_j, 1 \rangle = \int_a^b w(x) \varphi_j(x) dx$$

yields a contradiction, as the last integral cannot be zero (i.e., $w(x)\varphi_j(x) > 0 \ \forall x \in (a, b) \text{ or } w(x)\varphi_j(x) < 0 \ \forall x \in (a, b)$ excluding possibly x that are the roots of φ_j).

Suppose k < j. Letting $\phi(x) := \prod_{\ell=1}^{k} (x - \eta_{\ell})$, we have

$$0 = \langle \varphi_j, \phi \rangle = \int_a^b w(x) \varphi_j(x) \phi(x) dx.$$

Suppose k < j. Letting $\phi(x) := \prod_{\ell=1}^{k} (x - \eta_{\ell})$, we have

$$0 = \langle \varphi_j, \phi \rangle = \int_a^b w(x) \varphi_j(x) \phi(x) dx.$$

But again the last integral cannot be zero, so we end up with a contradiction.

 $(w(x)\varphi_j(x)\phi(x) > 0 \forall x \in (a, b) \text{ or } w(x)\varphi_j(x)\phi(x) < 0 \forall x \in (a, b)$ excluding possibly x that are the roots of φ_j, ϕ).

Consequently, k = j, that is φ_j must change sign at j distinct points η₁,..., η_j ∈ (a, b).

Consequently, k = j, that is φ_j must change sign at j distinct points η₁,..., η_j ∈ (a, b).

► $\eta_1, \ldots, \eta_j \in (a, b)$ must consist of all roots of φ_j , all simple.