Summary of Lecture 1

September 19, 2018

$$
f(x)=0 \Longleftrightarrow \underbrace{f(x)+x}_{g(x)}=x
$$

- $f, g: \mathbb{R} \rightarrow \mathbb{R}$ continuous on $[a, b]$

Existence of a fixed point on $[a, b]$
${ }^{(*)}$ If g maps $[a, b]$ into $[a, b]$

Theorem 0.1 (Brouwer's Fixed Point Thm). Suppose $g(x) \in$ $[a, b]$ for all $x \in[a, b]$. Then

$$
g\left(x_{*}\right)=x_{*} \quad \exists x_{*} \in[a, b] .
$$

Uniqueness of a fixed point on $[a, b]$

In addition to $\left(^{*}\right)$, if g is a contraction on $[a, b]$.

Computation

The simple iteration

$$
\left\{x_{k}\right\}, x_{k+1}=g\left(x_{k}\right)
$$

converges to this unique fixed point.

Theorem 0.2 (Contraction Mapping). Suppose $g(x) \in[a, b]$ for all $x \in[a, b]$. Additionally, suppose there exists an $L<1$ such that

$$
|g(x)-g(y)| \leq L|x-y| \quad \forall x, y \in[a, b] .
$$

(1) $g\left(x_{*}\right)=x_{*}$ for a unique $x_{*} \in[a, b]$.
(2) $\left\{x_{k}\right\}, x_{k+1}=g\left(x_{k}\right)$ is s.t. $\lim _{k \rightarrow \infty} x_{k}=x_{*}$ for all $x_{0} \in[a, b]$.

Example.

$f(x)=x^{2}-2$ on [1, 2].
(1) $g(x)=x^{2}-2+x, \quad x_{k+1}=x_{k}^{2}-2+x_{k}$
(2) $h(x)=\frac{2-x^{2}}{4}+x, \quad x_{k+1}=\frac{2-x_{k}^{2}}{4}+x_{k}$
(3) $k(x)=\frac{x^{2}+2}{2 x}, \quad x_{k+1}=\frac{x_{k}^{2}+2}{2 x_{k}}$

Taylor's theorem with 2nd order remainder

Let $g:[a, b] \rightarrow \mathbb{R}$ be such that g, g^{\prime} are continuous on $[a, b]$ and $g^{\prime \prime}$ exists on (a, b). Then

$$
g(b)=g(a)+g^{\prime}(a)(b-a)+\frac{g^{\prime \prime}(\varepsilon)}{2}(b-a)^{2} \quad \exists \varepsilon \in(a, b) .
$$

Theorem 0.3 (Taylor's theorem with p th order remainder). Let $g:[a, b] \rightarrow \mathbb{R}$ be such that $g, g^{\prime}, \ldots, g^{(p-1)}$ are continuous on $[a, b]$ and $g^{(p)}$ exists on (a, b). Then
$g(b)=g(a)+\sum_{j=1}^{p-1} \frac{g^{(j)}(a)}{j!}(b-a)^{j}+\frac{g^{(p)}(\varepsilon)}{p!}(b-a)^{p} \quad \exists \varepsilon \in(a, b)$.

