Reminders from Lecture 7

October 9, 2018
$\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}$ is a norm if

- (Positivity) $\|v\|>0$ for all nonzero $v \in \mathcal{V}$,
- (Homogeneity) $\|\alpha v\|=|\alpha|\|v\|$ for all $v \in \mathcal{V}$, all $\alpha \in \mathbb{R}$,
- (Triangle Inequality) $\|v+w\| \leq\|v\|+\|w\|$ for all $v, w \in \mathcal{V}$.

Common norms in \mathbb{R}^{n}
(2-norm) $\quad\|v\|_{2}:=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}$
(1-norm) $\quad\|v\|_{1}:=\left|v_{1}\right|+\left|v_{2}\right|+\cdots+\left|v_{n}\right|$
∞-norm $\quad\|v\|_{\infty}:=\max _{j=1, \ldots, n}\left|v_{j}\right|$

For $\|\cdot\|_{2}$ positivity and homogeneity are straightforward.

Triangle inequality follows from Cauchy-Schwarz inequality.

Theorem 0.1 (Cauchy-Schwarz Inequality). For every $v, w \in$ \mathbb{R}^{n}, we have

$$
\left|\sum_{j=1}^{n} v_{j} w_{j}\right| \leq\|v\|_{2}\|w\|_{2}
$$

Proof of the Cauchy-Schwarz inequality.

Consider following nonnegative quadratic polynomial in t.

$$
q(t):=\|v+t w\|_{2}^{2}=\sum_{j=1}^{n} v_{j}^{2}+2 t \sum_{j=1}^{n} v_{j} w_{j}+t^{2} \sum_{j=1}^{n} w_{j}^{2}
$$

Proof of the Cauchy-Schwarz inequality.
Consider following nonnegative quadratic polynomial in t.

$$
q(t):=\|v+t w\|_{2}^{2}=\sum_{j=1}^{n} v_{j}^{2}+2 t \sum_{j=1}^{n} v_{j} w_{j}+t^{2} \sum_{j=1}^{n} w_{j}^{2}
$$

The discriminant of $q(t)$ must be nonpositive, that is

$$
\left(2 \sum_{j=1}^{n} v_{j} w_{j}\right)^{2}-4\left(\sum_{j=1}^{n} v_{j}^{2} \sum_{j=1}^{n} w_{j}^{2}\right) \leq 0
$$

Proof of the Cauchy-Schwarz inequality.
Consider following nonnegative quadratic polynomial in t.

$$
q(t):=\|v+t w\|_{2}^{2}=\sum_{j=1}^{n} v_{j}^{2}+2 t \sum_{j=1}^{n} v_{j} w_{j}+t^{2} \sum_{j=1}^{n} w_{j}^{2}
$$

The discriminant of $q(t)$ must be nonpositive, that is

$$
\left(2 \sum_{j=1}^{n} v_{j} w_{j}\right)^{2}-4\left(\sum_{j=1}^{n} v_{j}^{2} \sum_{j=1}^{n} w_{j}^{2}\right) \leq 0
$$

which in turn implies the Cauchy-Schwarz inequality

$$
\left|\sum_{j=1}^{n} v_{j} w_{j}\right| \leq\|v\|_{2}\|w\|_{2}
$$

