Reminders from Lecture 7

October 9, 2018

 $\|\cdot\|:\mathcal{V}\rightarrow\mathbb{R}$ is a norm if

- (Positivity) ||v|| > 0 for all nonzero $v \in \mathcal{V}$,
- (Homogeneity) $\|\alpha v\| = |\alpha| \|v\|$ for all $v \in \mathcal{V}$, all $\alpha \in \mathbb{R}$,
- (Triangle Inequality) $||v+w|| \le ||v|| + ||w||$ for all $v, w \in \mathcal{V}$.

Common norms in \mathbb{R}^n

(2-norm)
$$\|v\|_2 := \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

(1-norm) $\|v\|_1 := |v_1| + |v_2| + \dots + |v_n|$
 ∞ -norm $\|v\|_{\infty} := \max_{j=1,\dots,n} |v_j|$

For $\|\cdot\|_2$ positivity and homogeneity are straightforward.

Triangle inequality follows from Cauchy-Schwarz inequality.

Theorem 0.1 (Cauchy-Schwarz Inequality). For every $v, w \in \mathbb{R}^n$, we have

$$\left|\sum_{j=1}^{n} v_j w_j\right| \leq \|v\|_2 \|w\|_2.$$

Proof of the Cauchy-Schwarz inequality.

Consider following nonnegative quadratic polynomial in *t*.

$$q(t) := ||v + tw||_2^2 = \sum_{j=1}^n v_j^2 + 2t \sum_{j=1}^n v_j w_j + t^2 \sum_{j=1}^n w_j^2$$

Proof of the Cauchy-Schwarz inequality.

Consider following nonnegative quadratic polynomial in *t*.

$$q(t) := ||v + tw||_2^2 = \sum_{j=1}^n v_j^2 + 2t \sum_{j=1}^n v_j w_j + t^2 \sum_{j=1}^n w_j^2$$

The discriminant of $\boldsymbol{q}(t)$ must be nonpositive, that is

$$\left(2\sum_{j=1}^{n} v_j w_j\right)^2 - 4\left(\sum_{j=1}^{n} v_j^2 \sum_{j=1}^{n} w_j^2\right) \le 0$$

Proof of the Cauchy-Schwarz inequality.

Consider following nonnegative quadratic polynomial in *t*.

$$q(t) := ||v + tw||_2^2 = \sum_{j=1}^n v_j^2 + 2t \sum_{j=1}^n v_j w_j + t^2 \sum_{j=1}^n w_j^2$$

The discriminant of $\boldsymbol{q}(t)$ must be nonpositive, that is

$$\left(2\sum_{j=1}^{n} v_j w_j\right)^2 - 4\left(\sum_{j=1}^{n} v_j^2 \sum_{j=1}^{n} w_j^2\right) \le 0$$

which in turn implies the Cauchy-Schwarz inequality

$$\left|\sum_{j=1}^{n} v_j w_j\right| \leq \|v\|_2 \|w\|_2.$$