
Reminders from Lecture 7

October 9, 2018

‖ · ‖ : V → R is a norm if

• (Positivity) ‖v‖ > 0 for all nonzero v ∈ V ,

• (Homogeneity) ‖αv‖ = |α|‖v‖ for all v ∈ V , all α ∈ R,

• (Triangle Inequality) ‖v+w‖ ≤ ‖v‖+‖w‖ for all v, w ∈ V .
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Common norms in Rn

(2-norm) ‖v‖2 :=
√
v21 + v22 + · · ·+ v2n

(1-norm) ‖v‖1 := |v1|+ |v2|+ · · ·+ |vn|

∞-norm ‖v‖∞ := max
j=1,...,n

|vj|
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For ‖ · ‖2 positivity and homogeneity are straightforward.

Triangle inequality follows from Cauchy-Schwarz inequality.

Theorem 0.1 (Cauchy-Schwarz Inequality). For every v, w ∈
Rn, we have ∣∣∣∣∣

n∑
j=1

vjwj

∣∣∣∣∣ ≤ ‖v‖2‖w‖2.
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Proof of the Cauchy-Schwarz inequality.

Consider following nonnegative quadratic polynomial in t.

q(t) := ‖v + tw‖22 =
n∑

j=1

v2j + 2t
n∑

j=1

vjwj + t2
n∑

j=1

w2
j
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Proof of the Cauchy-Schwarz inequality.
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n∑
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The discriminant of q(t) must be nonpositive, that is(
2

n∑
j=1

vjwj

)2

− 4

(
n∑

j=1

v2j

n∑
j=1

w2
j

)
≤ 0
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Proof of the Cauchy-Schwarz inequality.

Consider following nonnegative quadratic polynomial in t.

q(t) := ‖v + tw‖22 =
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The discriminant of q(t) must be nonpositive, that is(
2

n∑
j=1

vjwj

)2

− 4

(
n∑

j=1

v2j

n∑
j=1

w2
j

)
≤ 0

which in turn implies the Cauchy-Schwarz inequality∣∣∣∣∣
n∑

j=1

vjwj

∣∣∣∣∣ ≤ ‖v‖2‖w‖2.
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