Reminders from Lecture 7

October 9, 2018

| -] : ¥V — Risanorm if
e (Positivity) ||v|| > 0 for all nonzero v € V,
e (Homogeneity) ||av|| = |a||v]| forallv € V, all « € R,

e (Triangle Inequality) ||v+w|| < ||v|| +||w]| forall v, w € V.
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For || - |2 positivity and homogeneity are straightforward.
Triangle inequality follows from Cauchy-Schwarz inequality.

Theorem 0.1 (Cauchy-Schwarz Inequality). For every v, w €
R", we have
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Proof of the Cauchy-Schwarz inequality.

Consider following nonnegative quadratic polynomial in ¢.
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Proof of the Cauchy-Schwarz inequality.

Consider following nonnegative quadratic polynomial in ¢.
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The discriminant of ¢(¢) must be nonpositive, that is
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Proof of the Cauchy-Schwarz inequality.

Consider following nonnegative quadratic polynomial in ¢.

qt) = |lv+twl; = va+2t2vjwj+t22w]2~
j=1 j=1

j=1
The discriminant of ¢(¢) must be nonpositive, that is
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which in turn implies the Cauchy-Schwarz inequality
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