Norms on $\mathbb{R}^{n \times n}$ (matrix norms)

Induced Matrix Norms

Given a norm $\|\cdot\|$ on \mathbb{R}^{n}, the corresponding induced (or subordinate) matrix norm

$$
\|A\|:=\max _{v \in \mathbb{R}^{n}, v \neq 0} \frac{\|A v\|}{\|v\|}=\max _{w \in \mathbb{R}^{n},\|w\|=1}\|A w\|
$$

Induced Matrix Norms

Given a norm $\|\cdot\|$ on \mathbb{R}^{n}, the corresponding induced (or subordinate) matrix norm

$$
\|A\|:=\max _{v \in \mathbb{R}^{n}, v \neq 0} \frac{\|A v\|}{\|v\|}=\max _{w \in \mathbb{R}^{n},\|w\|=1}\|A w\|
$$

Matrix p-norm

$$
\|A\|_{p}:=\max _{w \in \mathbb{R}^{n},\|w\|_{p}=1}\|A w\|_{p}
$$

where $\|w\|_{p}=\sqrt[p]{\left|w_{1}\right|^{p}+\left|w_{2}\right|^{p}+\cdots+\left|w_{n}\right|^{p}}$

Characterizations of the 1-norm, ∞-norm

1 -norm is the maximal column sum

$$
\|A\|_{1}:=\max _{w \in \mathbb{R}^{n},\|w\|_{1}=1}\|A w\|_{1}=\max _{k=1, \ldots, n} \sum_{j=1}^{n}\left|a_{j k}\right|=\max _{k=1, \ldots, n}\left\|a_{k}\right\|_{1}
$$

∞-norm is the maximal row sum

$$
\|A\|_{\infty}:=\max _{w \in \mathbb{R}^{n},\|w\|_{\infty}=1}\|A w\|_{\infty}=\max _{j=1, \ldots, n} \sum_{k=1}^{n}\left|a_{j k}\right|
$$

Characterization of the 2-norm (the spectral norm)

Theorem
For every $A \in \mathbb{R}^{n \times n}$, we have

$$
\|A\|_{2}=\sqrt{\lambda_{n}}
$$

where λ_{n} denotes the largest eigenvalue of $A^{T} A$.

Characterization of the 2-norm (the spectral norm)

Theorem
For every $A \in \mathbb{R}^{n \times n}$, we have

$$
\|A\|_{2}=\sqrt{\lambda_{n}}
$$

where λ_{n} denotes the largest eigenvalue of $A^{T} A$.

Example.
$A=\left[\begin{array}{rr}2 & 5 \\ -6 & 1\end{array}\right], \quad A^{T} A=\left[\begin{array}{rr}2 & -6 \\ 5 & 1\end{array}\right]\left[\begin{array}{rr}2 & 5 \\ -6 & 1\end{array}\right]=\left[\begin{array}{cc}40 & 4 \\ 4 & 26\end{array}\right]$

Characterization of the 2-norm (the spectral norm)

Theorem

For every $A \in \mathbb{R}^{n \times n}$, we have

$$
\|A\|_{2}=\sqrt{\lambda_{n}}
$$

where λ_{n} denotes the largest eigenvalue of $A^{T} A$.

Example.

$$
A=\left[\begin{array}{rr}
2 & 5 \\
-6 & 1
\end{array}\right], \quad A^{T} A=\left[\begin{array}{rr}
2 & -6 \\
5 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & 5 \\
-6 & 1
\end{array}\right]=\left[\begin{array}{cc}
40 & 4 \\
4 & 26
\end{array}\right]
$$

Characteristic polynomial of $A^{\top} A$

$$
p(\lambda)=\operatorname{det}\left(A^{T} A-\lambda I\right)=(40-\lambda)(26-\lambda)-16=\lambda^{2}-66 \lambda+1024
$$

Characterization of the 2-norm (the spectral norm)

Theorem

For every $A \in \mathbb{R}^{n \times n}$, we have

$$
\|A\|_{2}=\sqrt{\lambda_{n}}
$$

where λ_{n} denotes the largest eigenvalue of $A^{T} A$.

Example.

$$
A=\left[\begin{array}{rr}
2 & 5 \\
-6 & 1
\end{array}\right], \quad A^{T} A=\left[\begin{array}{rr}
2 & -6 \\
5 & 1
\end{array}\right]\left[\begin{array}{rr}
2 & 5 \\
-6 & 1
\end{array}\right]=\left[\begin{array}{cc}
40 & 4 \\
4 & 26
\end{array}\right]
$$

Characteristic polynomial of $A^{\top} A$

$$
p(\lambda)=\operatorname{det}\left(A^{T} A-\lambda I\right)=(40-\lambda)(26-\lambda)-16=\lambda^{2}-66 \lambda+1024
$$

Eigenvalues of $A^{T} A: 33 \pm \sqrt{65}, \quad\|A\|_{2}=\sqrt{33+\sqrt{65}}$

Characterization of the 2-norm (the spectral norm)

First observe that $A^{\top} A$ has real nonnegative eigenvalues

Characterization of the 2-norm (the spectral norm)

First observe that $A^{T} A$ has real nonnegative eigenvalues, as

$$
A^{T} A q=\lambda q \quad \Longrightarrow \quad \lambda=\frac{q^{T} A^{T} A q}{q^{T} q}=\frac{\|A q\|_{2}^{2}}{\|q\|_{2}^{2}} \geq 0
$$

Characterization of the 2-norm (the spectral norm)

First observe that $A^{T} A$ has real nonnegative eigenvalues, as

$$
A^{T} A q=\lambda q \quad \Longrightarrow \quad \lambda=\frac{q^{T} A^{T} A q}{q^{T} q}=\frac{\|A q\|_{2}^{2}}{\|q\|_{2}^{2}} \geq 0
$$

- Sort them from smallest to largest, i.e.,

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} .
$$

Characterization of the 2-norm (the spectral norm)

First observe that $A^{T} A$ has real nonnegative eigenvalues, as

$$
A^{T} A q=\lambda q \quad \Longrightarrow \quad \lambda=\frac{q^{T} A^{T} A q}{q^{T} q}=\frac{\|A q\|_{2}^{2}}{\|q\|_{2}^{2}} \geq 0
$$

- Sort them from smallest to largest, i.e.,

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n} .
$$

- Denote with q_{j} the eigenvector corresponding to λ_{j} s.t. $\left\{q_{1}, \ldots, q_{n}\right\}$ is orthonormal.

Characterization of the 2-norm (the spectral norm)

Expand any $w \in \mathbb{R}^{n},\|w\|_{2}=1$ in terms of $\left\{q_{1}, \ldots, q_{n}\right\}$, that is

$$
w=\alpha_{1} q_{1}+\alpha_{2} q_{2}+\cdots+\alpha_{n} q_{n}
$$

for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{R}$

Characterization of the 2-norm (the spectral norm)

Expand any $w \in \mathbb{R}^{n},\|w\|_{2}=1$ in terms of $\left\{q_{1}, \ldots, q_{n}\right\}$, that is

$$
w=\alpha_{1} q_{1}+\alpha_{2} q_{2}+\cdots+\alpha_{n} q_{n}
$$

for some $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{R}$ s.t.

$$
\begin{equation*}
\alpha_{1}^{2}+\alpha_{2}^{2}+\cdots+\alpha_{n}^{2}=1 \tag{1}
\end{equation*}
$$

- (1) follows from

$$
\begin{aligned}
1=w^{T} w & =\left(\alpha_{1} q_{1}+\cdots+\alpha_{n} q_{n}\right)^{T}\left(\alpha_{1} q_{1}+\cdots+\alpha_{n} q_{n}\right) \\
& =\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}
\end{aligned}
$$

Characterization of the 2-norm (the spectral norm)

Consequently,

$$
\|A w\|_{2}=\sqrt{w^{\top} A^{T} A w}
$$

Characterization of the 2-norm (the spectral norm)

Consequently,

$$
\begin{aligned}
\|A w\|_{2} & =\sqrt{w^{\top} A^{\top} A w} \\
& =\sqrt{\left(\alpha_{1} q_{1}+\cdots+\alpha_{n} q_{n}\right)^{T}\left(\alpha_{1} \lambda_{1} q_{1}+\cdots+\alpha_{n} \lambda_{n} q_{n}\right)}
\end{aligned}
$$

Characterization of the 2-norm (the spectral norm)

Consequently,

$$
\begin{aligned}
\|\boldsymbol{A} \boldsymbol{w}\|_{2} & =\sqrt{\boldsymbol{w}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A w}} \\
& =\sqrt{\left(\alpha_{1} q_{1}+\cdots+\alpha_{n} q_{n}\right)^{\top}\left(\alpha_{1} \lambda_{1} q_{1}+\cdots+\alpha_{n} \lambda_{n} q_{n}\right)} \\
& =\sqrt{\alpha_{1}^{2} \lambda_{1}+\cdots+\alpha_{n}^{2} \lambda_{n}} \leq \sqrt{\left(\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}\right) \lambda_{n}}=\sqrt{\lambda_{n}} .
\end{aligned}
$$

Characterization of the 2-norm (the spectral norm)

Consequently,

$$
\begin{aligned}
\|A w\|_{2} & =\sqrt{\boldsymbol{w}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A w}} \\
& =\sqrt{\left(\alpha_{1} \boldsymbol{q}_{1}+\cdots+\alpha_{n} \boldsymbol{q}_{n}\right)^{\top}\left(\alpha_{1} \lambda_{1} q_{1}+\cdots+\alpha_{n} \lambda_{n} \boldsymbol{q}_{n}\right)} \\
& =\sqrt{\alpha_{1}^{2} \lambda_{1}+\cdots+\alpha_{n}^{2} \lambda_{n}} \leq \sqrt{\left(\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}\right) \lambda_{n}}=\sqrt{\lambda_{n}} .
\end{aligned}
$$

Specifically, for $w=q_{n}$ we have

$$
\left\|A q_{n}\right\|_{2}=\sqrt{q_{n}^{T} A^{T} A q_{n}}=\sqrt{q_{n}^{T}\left(\lambda_{n} q_{n}\right)}=\sqrt{\lambda_{n}}
$$

hence the result.

