Cauchy Sequences in \mathbb{R}^n

October 16, 2018

(1) A subset D of \mathbb{R}^n is open, if for every $\xi \in D$ there exists an $\varepsilon > 0$ such that

 $B_{\varepsilon}(\xi) \subseteq D,$

where $B_{\varepsilon}(\xi) := \{x \in \mathbb{R}^n \mid ||x - \xi||_{\infty} < \varepsilon\}.$

(2) A subset D of \mathbb{R}^n is closed if $\mathbb{R}^n \setminus D$ is open.

(3) An open neighborhood $N(\xi)$ of $\xi \in \mathbb{R}^n$ is an open subset of \mathbb{R}^n that contains ξ .

Definition 0.1. A function $g : D \to \mathbb{R}^n$ with D denoting a nonempty subset of \mathbb{R}^n is continuous at $\xi \in D$ if for every $\varepsilon > 0$ there exists $a \delta > 0$ such that

 $\|g(x) - g(\xi)\|_{\infty} \leq \varepsilon \qquad \forall x \in \overline{B}_{\delta}(\xi) \cap D,$

where $\overline{B}_{\varepsilon}(\xi) := \{x \in \mathbb{R}^n \mid ||x - \xi||_{\infty} \le \varepsilon\}.$

The function g is said to be continuous on D if g is continuous at every $\xi \in D$.

Theorem 0.2. Let

- the function g : D → ℝⁿ with D denoting a nonempty subset of ℝⁿ be continuous on D, and
- the sequence $\{x^{(k)}\}$ with $x^{(k)} \in D$ for all k be convergent with the limit in D.

Then

$$\lim_{k \to \infty} g(x^{(k)}) = g(\lim_{k \to \infty} x^{(k)}).$$

Definition 0.3. A sequence in \mathbb{R}^n is said to be Cauchy if for every $\varepsilon > 0$ there exists an integer K > 0 such that

 $\|x^{(m)} - x^{(k)}\|_{\infty} \leq \varepsilon \qquad \forall m, k \geq K.$

Example.

The sequence $\{s^{(k)}\}$ in \mathbb{R} with

$$s^{(k)} = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^k$$

is Cauchy.

Example.

The sequence $\{s^{(k)}\}$ in \mathbb{R} with

$$s^{(k)} = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^k$$

is Cauchy.

Indeed, for every m, k with m > k we have

$$|s^{(m)} - s^{(k)}| \leq \left(\frac{1}{2}\right)^{k+1} + \dots + \left(\frac{1}{2}\right)^m = \left(\frac{1}{2}\right)^{k+1} \frac{1 - \left(\frac{1}{2}\right)^{m-k}}{1 - 1/2} \leq \left(\frac{1}{2}\right)^k.$$

Example.

The sequence $\{s^{(k)}\}$ in $\mathbb R$ with

$$s^{(k)} = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^k$$

is Cauchy.

Indeed, for every m, k with m > k we have

$$|s^{(m)} - s^{(k)}| \leq \left(\frac{1}{2}\right)^{k+1} + \dots + \left(\frac{1}{2}\right)^m = \left(\frac{1}{2}\right)^{k+1} \frac{1 - \left(\frac{1}{2}\right)^{m-k}}{1 - 1/2} \leq \left(\frac{1}{2}\right)^k.$$

For every $\varepsilon > 0$, we can choose $K \in \mathbb{Z}^+$ so that $(1/2)^K \le \varepsilon$. Then for every $m, k \ge K$ we have

$$|s^{(m)} - s^{(k)}| \le \left(\frac{1}{2}\right)^K \le \varepsilon.$$

Theorem 0.4. *The following are equivalent:*

- (i) The sequence $\{x^{(k)}\}$ in \mathbb{R}^n is Cauchy.
- (ii) The sequence $\{x^{(k)}\}$ in \mathbb{R}^n is convergent.

Theorem 0.5. *The following are equivalent:*

- (i) The sequence $\{x^{(k)}\}$ in \mathbb{R}^n is Cauchy.
- (ii) The sequence $\{x^{(k)}\}$ in \mathbb{R}^n is convergent.

Proof of (ii) \implies (i) Suppose $\lim_{k\to\infty} x^{(k)} = \xi$.

Then for every $\varepsilon > 0$ there exists a K such that

 $\|x^{(k)} - \xi\|_{\infty} \leq \varepsilon/2 \qquad \forall k \geq K.$

Theorem 0.6. The following are equivalent:

- (i) The sequence $\{x^{(k)}\}$ in \mathbb{R}^n is Cauchy.
- (ii) The sequence $\{x^{(k)}\}$ in \mathbb{R}^n is convergent.

Proof of (ii) \implies (i) Suppose $\lim_{k\to\infty} x^{(k)} = \xi$. Then for every $\varepsilon > 0$ there exists a *K* such that

 $\|x^{(k)} - \xi\|_{\infty} \le \varepsilon/2 \qquad \forall k \ge K.$

But then for every $m, k \geq K$, we have

 $\|x^{(m)} - x^{(k)}\|_{\infty} = \|(x^{(m)} - \xi) + (\xi - x^{(k)})\|_{\infty} \le \|x^{(m)} - \xi\|_{\infty} + \|x^{(k)} - \xi\|_{\infty} \le \varepsilon,$ and the proof is complete

and the proof is complete.