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(1) A subset D of Rn is open, if for every ξ ∈ D there exists an
ε > 0 such that

Bε(ξ) ⊆ D,

where Bε(ξ) := {x ∈ Rn | ‖x− ξ‖∞ < ε}.

(2) A subset D of Rn is closed if Rn\D is open.

(3) An open neighborhood N(ξ) of ξ ∈ Rn is an open subset
of Rn that contains ξ.
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Definition 0.1. A function g : D → Rn with D denoting a
nonempty subset of Rn is continuous at ξ ∈ D if for every
ε > 0 there exists a δ > 0 such that

‖g(x)− g(ξ)‖∞ ≤ ε ∀x ∈ Bδ(ξ) ∩D,

where Bε(ξ) := {x ∈ Rn | ‖x− ξ‖∞ ≤ ε}.

The function g is said to be continuous onD if g is continuous
at every ξ ∈ D.
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Theorem 0.2. Let

• the function g : D → Rn with D denoting a nonempty
subset of Rn be continuous on D, and

• the sequence {x(k)} with x(k) ∈ D for all k be convergent
with the limit in D.

Then
lim
k→∞

g(x(k)) = g( lim
k→∞

x(k)).

3



Definition 0.3. A sequence in Rn is said to be Cauchy if for
every ε > 0 there exists an integer K > 0 such that

‖x(m) − x(k)‖∞ ≤ ε ∀m, k ≥ K.
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Example.
The sequence {s(k)} in R with

s(k) = 1 +
1

2
+

(
1

2

)2

+ · · ·+
(
1

2

)k

is Cauchy.
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Example.
The sequence {s(k)} in R with

s(k) = 1 +
1

2
+

(
1

2

)2

+ · · ·+
(
1

2

)k

is Cauchy.

Indeed, for every m, k with m > k we have

|s(m)−s(k)| ≤
(
1

2

)k+1

+· · ·+
(
1

2

)m

=

(
1

2

)k+1 1−
(
1
2

)m−k
1− 1/2

≤
(
1

2

)k

.
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Example.
The sequence {s(k)} in R with

s(k) = 1 +
1

2
+
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+ · · ·+
(
1

2
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is Cauchy.

Indeed, for every m, k with m > k we have

|s(m)−s(k)| ≤
(
1

2

)k+1

+· · ·+
(
1

2

)m

=

(
1

2

)k+1 1−
(
1
2

)m−k
1− 1/2

≤
(
1

2

)k

.

For every ε > 0, we can choose K ∈ Z+ so that (1/2)K ≤ ε.
Then for every m, k ≥ K we have

|s(m) − s(k)| ≤
(
1

2

)K

≤ ε.
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Theorem 0.4. The following are equivalent:

(i) The sequence {x(k)} in Rn is Cauchy.

(ii) The sequence {x(k)} in Rn is convergent.
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Theorem 0.5. The following are equivalent:

(i) The sequence {x(k)} in Rn is Cauchy.

(ii) The sequence {x(k)} in Rn is convergent.

Proof of (ii) =⇒ (i)
Suppose limk→∞ x

(k) = ξ.
Then for every ε > 0 there exists a K such that

‖x(k) − ξ‖∞ ≤ ε/2 ∀k ≥ K.
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Theorem 0.6. The following are equivalent:

(i) The sequence {x(k)} in Rn is Cauchy.

(ii) The sequence {x(k)} in Rn is convergent.

Proof of (ii) =⇒ (i)
Suppose limk→∞ x

(k) = ξ.
Then for every ε > 0 there exists a K such that

‖x(k) − ξ‖∞ ≤ ε/2 ∀k ≥ K.

But then for every m, k ≥ K, we have

‖x(m)−x(k)‖∞ = ‖(x(m)−ξ)+(ξ−x(k))‖∞ ≤ ‖x(m)−ξ‖∞+‖x(k)−ξ‖∞ ≤ ε,

and the proof is complete.
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