Math 305: Numerical Anaysis

Instructor: Emre Mengi

Fall Semester 2018
Final Examination

NAME

Student ID

Signature \qquad

$\# 1$	15	
$\# 2$	20	
$\# 3$	15	
$\# 4$	15	
$\# 5$	20	
$\# 6$	15	
Σ	100	

- Put your name, student ID and signature in the spaces provided above.
- Duration for this exam is 135 minutes.

Problem 1. Given points

$$
\left(x_{0}, y_{0}\right)=(1,2), \quad\left(x_{1}, y_{1}\right)=(2,1), \quad\left(x_{2}, y_{2}\right)=(4,-1)
$$

in \mathbb{R}^{2}, consider the problem of finding a line $\ell(x)=a_{1} x+a_{0}$ that best fits these points, that is the problem of determining $a_{0}, a_{1} \in \mathbb{R}$ such that

$$
\begin{equation*}
\sqrt{\sum_{j=0}^{2}\left[\ell\left(x_{j}\right)-y_{j}\right]^{2}} \tag{1}
\end{equation*}
$$

is as small as possible.
(a) (5 points) Write down a least squares problem in the form

$$
\min _{a_{0}, a_{1} \in \mathbb{R}}\left\|A\left[\begin{array}{c}
a_{0} \\
a_{1}
\end{array}\right]-b\right\|_{2}
$$

for which the minimizing a_{0}, a_{1} also minimizes (1).
(b) (10 points) Solve the least squares problem in part (a) by exploiting the associated normal equation, hence determine the line $\ell(x)$ minimizing (1).

Problem 2.

(a) (10 points) Write down the Lagrange interpolation polynomial $p_{2}(x)$ of degree 2 for $f(x)=\cos ((\pi x) / 2)$ with interpolation points $x_{0}=0$, $x_{1}=1 / 2, x_{2}=1$.
(b) (10 points) Now let $p_{n}(x)$ denote the Lagrange interpolation polynomial of degree n for $f(x)=\cos ((\pi x) / 2)$ with interpolation points $x_{j}=$ $j h$ for $j=0,1,2, \ldots, n$ where $h:=1 / n$.

Show that for every $x \in[0,1]$ the following holds:

$$
\lim _{n \rightarrow \infty}\left[\cos ((\pi x) / 2)-p_{n}(x)\right]=0
$$

Problem 3. (15 points) Suppose that \mathcal{P}_{n} (the vector space of polynomials $p: \mathbb{R} \rightarrow \mathbb{R}$ of degree at most n) is equipped with the inner product

$$
\langle p, q\rangle:=\int_{a}^{b} p(x) q(x) d x
$$

on a prescribed interval $[a, b] \subset \mathbb{R}$.
It follows from the Gram-Schmidt procedure that there exists a monic polynomial $\varphi_{n} \in \mathcal{P}_{n}$ such that

$$
\begin{equation*}
\left\langle\varphi_{n}, r\right\rangle=0 \quad \forall r \in \mathcal{P}_{n-1} \tag{2}
\end{equation*}
$$

Show that the monic polynomial φ_{n} satisfying (2) is unique.
(Note: Recall that a monic polynomial of degree n has the form

$$
p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x_{0}+a_{0}
$$

that is the coefficient of the leading term is one.)

Problem 4. (15 points) Consider the integral

$$
I(f):=\int_{-2}^{2} \frac{1}{\sqrt{1-x^{2} / 4}} f(x) d x .
$$

Derive a quadrature formula in the form

$$
Q(f):=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)
$$

for this integral such that $Q(f)=I(f)$ for all $f \in \mathcal{P}_{3}$.

Problem 5. Let us consider the initial value problem

$$
\begin{align*}
& y^{\prime}=f(x, y), \tag{3}\\
& y\left(x_{0}\right)=y_{0}
\end{align*}
$$

where $y:\left[x_{0}, X_{M}\right] \rightarrow \mathbb{R}$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Assume that this initial value problem has a unique solution y that is differentiable infinitely many times.

A one-step method can be defined for the solution of (3) and for a given positive integer N based on the update rule

$$
\begin{equation*}
y_{n+1}=y_{n}+h f\left(x_{n}+\frac{3 h}{4}, y_{n}+\frac{3 h}{4} f\left(x_{n}, y_{n}\right)\right) \quad n=0,1,2, \ldots, N-1, \tag{4}
\end{equation*}
$$

where $x_{n}:=x_{0}+n h$ and $h:=\left(X_{m}-x_{0}\right) / N$.
(a) (5 points) Is the one-step method based on the update rule (4) consistent?
(b) (15 points) Determine the order of accuracy for this one-step method defined by (4).

Problem 6. (15 points) Consider the ∞-norm

$$
\begin{equation*}
\|f\|_{\infty}:=\max _{x \in[-1,1]}|f(x)| \tag{5}
\end{equation*}
$$

defined over $C[-1,1]$, the space of continuous functions on $[-1,1]$. Find the polynomial $p_{*} \in \mathcal{P}_{2}$ such that

$$
\left\|\left(2 x^{3}+x^{2}\right)-p_{*}\right\|_{\infty}=\min _{p \in \mathcal{P}_{2}}\left\|\left(2 x^{3}+x^{2}\right)-p\right\|_{\infty}
$$

where $\|\cdot\|_{\infty}$ is defined as in (5).

