Math 305: Numerical Anaysis

Instructor: Emre Mengi

Fall Semester 2018
1st Midterm Examination

- Put your name, student ID and signature in the spaces provided above.
- Duration for this exam is 100 minutes.

Problem 1 Given $a \in \mathbb{R}, a \neq 0$, one way of computing $1 / a$ without performing any division is the sequence $\left\{x_{k}\right\}$ in \mathbb{R} defined by

$$
x_{k+1}=(a+1) x_{k}-1
$$

for a given $x_{0} \in \mathbb{R}$.
(a) (13 points) Determine the values of a such that $\left\{x_{k}\right\}$ converges to $1 / a$ for all $x_{0} \in\left(\frac{1}{a}-\delta, \frac{1}{a}+\delta\right)$ for some $\delta>0$. Explain your reasoning.
(b) (12 points) Determine the values of a such that $\left\{x_{k}\right\}$ cannot converge to $1 / a$ unless $x_{0}=1 / a$. Explain why.

Problem 2 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f^{(4)}(x)$ is continuous on \mathbb{R}. Furthermore, let $x_{*} \in \mathbb{R}$ satisfy $f\left(x_{*}\right)=f^{\prime}\left(x_{*}\right)=0, f^{\prime \prime}\left(x_{*}\right) \neq 0$, $f^{\prime \prime \prime}\left(x_{*}\right) \neq f^{\prime \prime}\left(x_{*}\right)$.

Suppose that the sequence $\left\{x_{k}\right\}$ in \mathbb{R} defined by

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)+f\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}
$$

for a given $x_{0} \in \mathbb{R}$ converges to x_{*}. Show that the order of this convergence to x_{*} is two.

Problem 3 For a given invertible matrix $A \in \mathbb{R}^{n \times n}$, let us consider the function

$$
\text { A. }: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad \text { A. }(b):=A b .
$$

(a) (15 points) Suppose that \mathbb{R}^{n} is equipped with a norm $\|\cdot\|$. Denote with $\|A\|,\left\|A^{-1}\right\|$ the matrix norms of A, A^{-1}, respectively, induced by $\|\cdot\|$ on \mathbb{R}^{n}. Show that, at every $\widehat{b} \in \mathbb{R}^{n}$, the relative local condition number of A. at \widehat{b} (defined over $D=\mathbb{R}^{n}$) satisfies

$$
\operatorname{cond}_{\widehat{b}} \mathbf{A .} \leq\|A\|\left\|A^{-1}\right\|
$$

(b) (10 points) Now consider part (a) with the particular choice of $\|\cdot\|=$ $\|\cdot\|_{1}$ on \mathbb{R}^{n} (that is, $\|\cdot\|$ is the 1 -norm on \mathbb{R}^{n}), and the corresponding induced matrix norm on $\mathbb{R}^{n \times n}$, that is the matrix 1-norm on $\mathbb{R}^{n \times n}$.

Find a particular \widehat{b} so that

$$
\operatorname{cond}_{\widehat{b}} \mathbf{A .}=\|A\|_{1}\left\|A^{-1}\right\|_{1} .
$$

Problem 4 Show that every matrix $A \in \mathbb{R}^{n \times n}$ has a factorization of the form

$$
A P=L U
$$

where $P \in \mathbb{R}^{n \times n}$ is a permutation matrix, $L \in \mathbb{R}^{n \times n}$ is a lower triangular matrix, and $U \in \mathbb{R}^{n \times n}$ is a unit upper triangular matrix (that is U is an upper triangular matrix whose every diagonal entry is 1).

