MATH 305: Numerical Anaysis

Instructor: Emre Mengi

Fall Semester 2018 1st Midterm Examination

	#1	25	
	#2	25	
NAME	 #3	25	
STUDENT ID	#4	25	
	 Σ	100	
SIGNATURE	 		

- Put your name, student ID and signature in the spaces provided above.
- Duration for this exam is 100 minutes.

Problem 1 Given $a \in \mathbb{R}$, $a \neq 0$, one way of computing 1/a without performing any division is the sequence $\{x_k\}$ in \mathbb{R} defined by

$$x_{k+1} = (a+1)x_k - 1$$

for a given $x_0 \in \mathbb{R}$.

- (a) (13 points) Determine the values of *a* such that $\{x_k\}$ converges to 1/a for all $x_0 \in (\frac{1}{a} \delta, \frac{1}{a} + \delta)$ for some $\delta > 0$. Explain your reasoning.
- (b) (12 points) Determine the values of *a* such that $\{x_k\}$ cannot converge to 1/a unless $x_0 = 1/a$. Explain why.

Problem 2 Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $f^{(4)}(x)$ is continuous on \mathbb{R} . Furthermore, let $x_* \in \mathbb{R}$ satisfy $f(x_*) = f'(x_*) = 0$, $f''(x_*) \neq 0$, $f'''(x_*) \neq f''(x_*)$.

Suppose that the sequence $\{x_k\}$ in \mathbb{R} defined by

$$x_{k+1} = x_k - \frac{f'(x_k) + f(x_k)}{f''(x_k)}$$

for a given $x_0 \in \mathbb{R}$ converges to x_* . Show that the order of this convergence to x_* is two.

Problem 3 For a given invertible matrix $A \in \mathbb{R}^{n \times n}$, let us consider the function

$$\mathbf{A}_{\bullet}: \mathbb{R}^n \to \mathbb{R}^n, \qquad \mathbf{A}_{\bullet}(b) := Ab.$$

(a) (15 points) Suppose that Rⁿ is equipped with a norm || · ||. Denote with ||A||, ||A⁻¹|| the matrix norms of A, A⁻¹, respectively, induced by || · || on Rⁿ. Show that, at every b̂ ∈ Rⁿ, the relative local condition number of A. at b̂ (defined over D = Rⁿ) satisfies

$$\operatorname{cond}_{\widehat{b}} \mathbf{A} \leq \|A\| \|A^{-1}\|.$$

(b) (10 points) Now consider part (a) with the particular choice of $\|\cdot\| = \|\cdot\|_1$ on \mathbb{R}^n (that is, $\|\cdot\|$ is the 1-norm on \mathbb{R}^n), and the corresponding induced matrix norm on $\mathbb{R}^{n \times n}$, that is the matrix 1-norm on $\mathbb{R}^{n \times n}$.

Find a particular \hat{b} so that

cond
$$_{\widehat{b}} \mathbf{A}_{\bullet} = \|A\|_1 \|A^{-1}\|_1.$$

Math 305, Midterm 1

Problem 4 Show that every matrix $A \in \mathbb{R}^{n \times n}$ has a factorization of the form

$$AP = LU$$

where $P \in \mathbb{R}^{n \times n}$ is a permutation matrix, $L \in \mathbb{R}^{n \times n}$ is a lower triangular matrix, and $U \in \mathbb{R}^{n \times n}$ is a unit upper triangular matrix (that is U is an upper triangular matrix whose every diagonal entry is 1).