MATH 305: Numerical Anaysis

Instructor: Emre Mengi

Fall Semester 2018 2nd Midterm Examination

	#1	25	
	#2	25	
NAME	 #3	25	
Student ID	#4	25	
	 Σ	100	
SIGNATURE			

- Put your name, student ID and signature in the spaces provided above.
- Duration for this exam is 110 minutes.

Problem 1

(a) (15 points) Derive a quadrature formula in the form

$$Q(f) := w_0 f(1) + w_1 f(2)$$

for the integral

$$I(f) = \int_0^3 f(x)dx \tag{1}$$

such that Q(f)=I(f) whenever $f:\mathbb{R}\to\mathbb{R}$ is a polynomial of degree at most one.

(b) (10 points) Now let $f : \mathbb{R} \to \mathbb{R}$ be a function such that f''(x) exists and continuous on \mathbb{R} , and let $M_2 := \max_{x \in [0,3]} |f''(x)|$.

Show that the quadrature formula that you derived in part (a) satisfies

$$|I(f) - Q(f)| \le \frac{11M_2}{12},$$

or otherwise a similar upper bound, where I(f) is the integral in (1).

Math 305, Midterm 2

Problem 2 Consider the sequence $\{q^{(k)}\}$ defined by $q^{(k+1)} := Aq^{(k)}/||Aq^{(k)}||_2$ and $q^{(0)} := (1,0)^T$ for

$$A = \left[\begin{array}{rrr} 1 & -8 \\ -8 & -11 \end{array} \right].$$

- (a) (13 points) Determine a unit vector v_* such that $||q^{(k)} c_k v_*||_2 \to 0$ as $k \to \infty$ for some sequence $\{c_k\}$ in \mathbb{R} satisfying $\lim_{k\to\infty} |c_k| = 1$.
- (b) (12 points) Find the limit

$$\lim_{k \to \infty} \frac{\|q^{(k+1)} - c_{k+1}v_*\|_2}{\|q^{(k)} - c_kv_*\|_2},$$

where $\{c_k\}$, $\{q^{(k)}\}$, v_* are as in part (a).

Problem 3 Suppose $g : \mathbb{R}^2 \to \mathbb{R}^2$ has continuous first derivatives, and x_* is a fixed point of g such that

$$\left|\frac{\partial g_j(x_*)}{\partial x_\ell}\right| < \frac{1}{5}$$

for j = 1, 2 and $\ell = 1, 2$.

Show that there exists an $\varepsilon > 0$ such that for all $x^{(0)} \in \overline{B}_{\varepsilon}(x_*)$ the sequence $\{x^{(k)}\}, x^{(k+1)} = g(x^{(k)})$ converges to x_* and satisfies

$$\frac{\|x^{(k+1)} - x_*\|_{\infty}}{\|x^{(k)} - x_*\|_{\infty}} < \frac{1}{2}$$

for all k.

(Recall that $\overline{B}_{\varepsilon}(x_*) := \{x \in \mathbb{R}^2 \mid ||x - x_*||_{\infty} \le \varepsilon\}$.)

Problem 4 A matrix $H \in \mathbb{R}^{n \times n}$ is called Hessenberg if $h_{jk} = 0$ whenever j - k > 1. For instance the following 4×4 matrix is Hessenberg.

2	1	1	3	
1	4	5	2	
0	-2	3	-1	•
0	0	-3	1	

For every Hessenberg matrix $H \in \mathbb{R}^{n \times n}$ there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that

$$QH = R \tag{2}$$

for some upper triangular matrix $R \in \mathbb{R}^{n \times n}$.

Given a Hessenberg matrix $H \in \mathbb{R}^{n \times n}$, design an algorithm that computes an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ satisfying (2) for some orthogonal matrix $Q \in \mathbb{R}^{n \times n}$. Your algorithm must perform at most $\sim cn^2$ arithmetic operations for some constant c (that is independent of n). Math 305, Midterm 2