Reminders from Lecture 9 \& Orthogonal Projectors

Projections \& Projectors

Given $\mathcal{S}_{1}, \mathcal{S}_{2}$, subspaces of \mathbb{C}^{n} such that

$$
\mathcal{S}_{1} \oplus \mathcal{S}_{2}=\mathbb{C}^{n}
$$

- $v=v_{S_{1}}+v_{S_{2}}, \quad v_{S_{1}} \in \mathcal{S}_{1}, v_{S_{2}} \in \mathcal{S}_{2}$. $v_{S_{1}}$ is the projection of v onto \mathcal{S}_{1} along \mathcal{S}_{2}.

Projections \& Projectors

Given $\mathcal{S}_{1}, \mathcal{S}_{2}$, subspaces of \mathbb{C}^{n} such that

$$
\mathcal{S}_{1} \oplus \mathcal{S}_{2}=\mathbb{C}^{n}
$$

- $v=v_{S_{1}}+v_{S_{2}}, \quad v_{S_{1}} \in \mathcal{S}_{1}, v_{S_{2}} \in \mathcal{S}_{2}$. $v_{S_{1}}$ is the projection of v onto \mathcal{S}_{1} along \mathcal{S}_{2}.
- The matrix $P \in \mathbb{C}^{n \times n}$ such that

$$
P v=v_{S_{1}} \quad \forall v \in \mathbb{C}^{n}
$$

is the projector onto \mathcal{S}_{1} along \mathcal{S}_{2}.

Characterization of Projectors

- If P is a projector, $P^{2}=P$.
- If $P^{2}=P$, then
P is a projector onto $\operatorname{Col}(P)$ along $\operatorname{Null}(P)$.

Characterization of Projectors

- If P is a projector, $P^{2}=P$.
- If $P^{2}=P$, then
P is a projector onto $\operatorname{Col}(P)$ along $\operatorname{Null}(P)$.

Example.

$$
P=\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]
$$

As $P^{2}=P$, this is a projector.

Characterization of Projectors

- If P is a projector, $P^{2}=P$.
- If $P^{2}=P$, then
P is a projector onto $\operatorname{Col}(P)$ along $\operatorname{Null}(P)$.

Example.

$$
P=\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]
$$

As $P^{2}=P$, this is a projector.
P projects onto span $\left\{\left[\begin{array}{r}1 \\ -1\end{array}\right]\right\}$ along span $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$

Orthogonal Projections \& Orthogonal Projectors

Let \mathcal{S} be a subspace of \mathbb{C}^{n},
\mathcal{S}^{\perp} be the orthogonal complement of \mathcal{S}.

Orthogonal Projections \& Orthogonal Projectors

Let \mathcal{S} be a subspace of \mathbb{C}^{n},
\mathcal{S}^{\perp} be the orthogonal complement of \mathcal{S}.

- Every $v \in \mathbb{C}^{n}$ can be written as

$$
v=v_{S}+v_{S^{\perp}},
$$

for some $v_{S} \in \mathcal{S}$ and $v_{S^{\perp}} \in \mathcal{S}^{\perp}$ in a unique way. (since $\mathcal{S} \oplus \mathcal{S}^{\perp}=\mathbb{C}^{n}$)

Orthogonal Projections \& Orthogonal Projectors

Let \mathcal{S} be a subspace of \mathbb{C}^{n},
\mathcal{S}^{\perp} be the orthogonal complement of \mathcal{S}.

- Every $v \in \mathbb{C}^{n}$ can be written as

$$
v=v_{S}+v_{S^{\perp}},
$$

for some $v_{S} \in \mathcal{S}$ and $v_{S^{\perp}} \in \mathcal{S}^{\perp}$ in a unique way. (since $\mathcal{S} \oplus \mathcal{S}^{\perp}=\mathbb{C}^{n}$)

- v_{S} is called the orthogonal projection of v onto \mathcal{S}.

Orthogonal Projections \& Orthogonal Projectors

Let \mathcal{S} be a subspace of \mathbb{C}^{n},
\mathcal{S}^{\perp} be the orthogonal complement of \mathcal{S}.

- Every $v \in \mathbb{C}^{n}$ can be written as

$$
v=v_{S}+v_{S^{\perp}},
$$

for some $v_{S} \in \mathcal{S}$ and $v_{S^{\perp}} \in \mathcal{S}^{\perp}$ in a unique way. (since $\mathcal{S} \oplus \mathcal{S}^{\perp}=\mathbb{C}^{n}$)

- v_{S} is called the orthogonal projection of v onto \mathcal{S}.
- The matrix $P \in \mathbb{C}^{n \times n}$ such that

$$
P v=v_{S} \quad \forall v \in \mathbb{C}^{n}
$$

is the orthogonal projector onto \mathcal{S}.

