Orthogonal Projectors

October 22, 2018

 ${\mathcal S}$ - a subspace of ${\mathbb C}^n$

Every vector $v \in \mathbb{C}^n$ can be expressed in a unique way as

$$v = v_S + v_{S^{\perp}}, \quad \exists v_S \in \mathcal{S}, \ \exists v_{S^{\perp}} \in \mathcal{S}^{\perp}.$$

- v_S is the orthogonal projection of v onto S.
- The matrix $P \in \mathbb{C}^{n \times n}$ such that

$$Pv = v_S \quad \forall v \in \mathbb{C}^n$$

is the orthogonal projector onto \mathcal{S} .

Representation in terms of a basis $\{a_1, \ldots, a_q\}$ for S.

$$P = A(A^*A)^{-1}A^*, \qquad A := \begin{bmatrix} a_1 & a_2 & \dots & a_q \end{bmatrix}$$

Example.

$$S := \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\2\\1\\1 \end{bmatrix} \right\}, \quad \operatorname{Orthogonal projector onto} S$$

$$P = \begin{bmatrix} 1 & 1\\1 & 0\\1 & 2\\1 & 1 \end{bmatrix} \left(\begin{bmatrix} 1 & 1 & 1 & 1\\1 & 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1\\1 & 0\\1 & 2\\1 & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 1 & 1 & 1\\1 & 0 & 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1\\1 & 0\\1 & 2\\1 & 1 \end{bmatrix} \left(\frac{1}{8} \begin{bmatrix} 6 & -4\\-4 & 4 \end{bmatrix} \right) \begin{bmatrix} 1 & 1 & 1 & 1\\1 & 0 & 2 & 1 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1\\1 & 3 & -1 & 1\\1 & -1 & 3 & 1\\1 & 1 & 1 & 1 \end{bmatrix}$$

Representation in terms of an orthonormal basis $\{u_1, \ldots, u_q\}$

$$P = UU^*, \qquad U := \left[\begin{array}{cccc} u_1 & u_2 & \dots & u_q \end{array} \right]$$

Example.

$$\mathcal{S} := \operatorname{span} \left\{ \begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1 \end{array} \right\}, \begin{array}{c} \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\ -1\\ 1\\ 1\\ 0 \end{bmatrix} \right\}, \text{ Orthogonal proj. onto } \mathcal{S}$$

$$P = \begin{bmatrix} 1/2 & 0\\ 1/2 & -1/\sqrt{2}\\ 1/2 & 1/\sqrt{2}\\ 1/2 & 0 \end{bmatrix} \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2\\ 0 & -1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix} = \begin{array}{c} 1 & 1 & 1 & 1\\ 1 & 3 & -1 & 1\\ 1 & -1 & 3 & 1\\ 1 & 1 & 1 & 1 \end{bmatrix}$$

- (1) *P* is an orthogonal projector.
- (2) $P^* = P$.

(1) *P* is an orthogonal projector.

(2) $P^* = P$.

Proof of (1) \Longrightarrow (2)

Suppose *P* is a projector onto the subspace S with the orthonormal basis $\{u_1, \ldots, u_q\}$.

(1) *P* is an orthogonal projector.

(2) $P^* = P$.

Proof of (1) \Longrightarrow (2)

Suppose *P* is a projector onto the subspace S with the orthonormal basis $\{u_1, \ldots, u_q\}$. Then

 $P = UU^*$, where $U := \begin{bmatrix} u_1 & \dots & u_q \end{bmatrix}$

satisfies $P^* = P$.

(1) *P* is an orthogonal projector.

(2) $P^* = P$.

Proof of (2) \Longrightarrow (1)

P is a projector onto $\mathrm{Col}(P)$ along $\mathrm{Null}(P).$ Hence, it suffices to show that $\mathrm{Null}(P)=\mathrm{Col}(P)^{\perp}.$

(1) *P* is an orthogonal projector.

(2) $P^* = P$.

Proof of $(2) \Longrightarrow (1)$

Let us prove $\operatorname{Null}(P) \subseteq \operatorname{Col}(P)^{\perp}$. Let $z \in \operatorname{Null}(P)$.

- (1) *P* is an orthogonal projector.
- (2) $P^* = P$.
- **Proof of** (2) \Longrightarrow (1)

Let us prove $\operatorname{Null}(P) \subseteq \operatorname{Col}(P)^{\perp}$. Let $z \in \operatorname{Null}(P)$. For every $y \in \operatorname{Col}(P)$

$$y^*z = (P\widetilde{y})^*z = \widetilde{y}^*P^*z = \widetilde{y}^*Pz = 0$$

for some $\widetilde{y} \in \mathbb{C}^n$, so $z \in \operatorname{Col}(P)^{\perp}$.

(1) *P* is an orthogonal projector.

(2) $P^* = P$.

Proof of (2) \Longrightarrow (1)

Now let us prove $\operatorname{Null}(P) \supseteq \operatorname{Col}(P)^{\perp}$. Let $z \in \operatorname{Col}(P)^{\perp}$.

- (1) *P* is an orthogonal projector.
- (2) $P^* = P$.
- **Proof of** $(2) \Longrightarrow (1)$

Now let us prove $\operatorname{Null}(P) \supseteq \operatorname{Col}(P)^{\perp}$. Let $z \in \operatorname{Col}(P)^{\perp}$. Then

$$0 = (Pz)^*z = z^*Pz = z^*P^2z = ||Pz||_2^2$$

implying Pz = 0, so $z \in Null(P)$.