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S - a subspace of Cn

Every vector v ∈ Cn can be expressed in a unique way as

v = vS + vS⊥, ∃vS ∈ S, ∃vS⊥ ∈ S⊥.

• vS is the orthogonal projection of v onto S.

• The matrix P ∈ Cn×n such that

Pv = vS ∀v ∈ Cn

is the orthogonal projector onto S.
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Representation in terms of a basis {a1, . . . , aq} for S.

P = A(A∗A)−1A∗, A :=
[
a1 a2 . . . aq

]
Example.
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Representation in terms of an orthonormal basis {u1, . . . , uq}

P = UU ∗, U :=
[
u1 u2 . . . uq

]
Example.
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Theorem. Let P ∈ Cn×n be a projector. The following are
equivalent:

(1) P is an orthogonal projector.

(2) P ∗ = P .
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Theorem. Let P ∈ Cn×n be a projector. The following are
equivalent:

(1) P is an orthogonal projector.

(2) P ∗ = P .

Proof of (1) =⇒ (2)

Suppose P is a projector onto the subspace S with the or-
thonormal basis {u1, . . . , uq}.
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Theorem. Let P ∈ Cn×n be a projector. The following are
equivalent:

(1) P is an orthogonal projector.

(2) P ∗ = P .

Proof of (1) =⇒ (2)

Suppose P is a projector onto the subspace S with the or-
thonormal basis {u1, . . . , uq}. Then

P = UU ∗, where U :=
[
u1 . . . uq

]
satisfies P ∗ = P .
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Theorem. Let P ∈ Cn×n be a projector. The following are
equivalent:

(1) P is an orthogonal projector.

(2) P ∗ = P .

Proof of (2) =⇒ (1)

P is a projector onto Col(P ) along Null(P ).
Hence, it suffices to show that Null(P ) = Col(P )⊥.
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Theorem. Let P ∈ Cn×n be a projector. The following are
equivalent:

(1) P is an orthogonal projector.

(2) P ∗ = P .

Proof of (2) =⇒ (1)

Let us prove Null(P ) ⊆ Col(P )⊥.
Let z ∈ Null(P ).
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Theorem. Let P ∈ Cn×n be a projector. The following are
equivalent:

(1) P is an orthogonal projector.

(2) P ∗ = P .

Proof of (2) =⇒ (1)

Let us prove Null(P ) ⊆ Col(P )⊥.
Let z ∈ Null(P ). For every y ∈ Col(P )

y∗z = (P ỹ)∗z = ỹ∗P ∗z = ỹ∗Pz = 0

for some ỹ ∈ Cn, so z ∈ Col(P )⊥.
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Theorem. Let P ∈ Cn×n be a projector. The following are
equivalent:

(1) P is an orthogonal projector.

(2) P ∗ = P .

Proof of (2) =⇒ (1)

Now let us prove Null(P ) ⊇ Col(P )⊥.
Let z ∈ Col(P )⊥.
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Theorem. Let P ∈ Cn×n be a projector. The following are
equivalent:

(1) P is an orthogonal projector.

(2) P ∗ = P .

Proof of (2) =⇒ (1)

Now let us prove Null(P ) ⊇ Col(P )⊥.
Let z ∈ Col(P )⊥. Then

0 = (Pz)∗z = z∗Pz = z∗P 2z = ‖Pz‖22

implying Pz = 0, so z ∈ Null(P ).

11


