Orthogonal Projectors

October 22, 2018
\mathcal{S} - a subspace of \mathbb{C}^{n}
Every vector $v \in \mathbb{C}^{n}$ can be expressed in a unique way as

$$
v=v_{S}+v_{S^{\perp}}, \quad \exists v_{S} \in \mathcal{S}, \exists v_{S^{\perp}} \in \mathcal{S}^{\perp} .
$$

- v_{S} is the orthogonal projection of v onto \mathcal{S}.
- The matrix $P \in \mathbb{C}^{n \times n}$ such that

$$
P v=v_{S} \quad \forall v \in \mathbb{C}^{n}
$$

is the orthogonal projector onto \mathcal{S}.

Representation in terms of a basis $\left\{a_{1}, \ldots, a_{q}\right\}$ for \mathcal{S}.

$$
P=A\left(A^{*} A\right)^{-1} A^{*}, \quad A:=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{q}
\end{array}\right]
$$

Example.

$$
\begin{aligned}
\mathcal{S}: & =\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
2 \\
1
\end{array}\right]\right\}, \text { Orthogonal projector onto } \mathcal{S} \\
P & =\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 2 \\
1 & 1
\end{array}\right]\left(\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 2 \\
1 & 1
\end{array}\right]\right)^{-1}\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 2 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 2 \\
1 & 1
\end{array}\right]\left(\frac{1}{8}\left[\begin{array}{rr}
6 & -4 \\
-4 & 4
\end{array}\right]\right)\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 0 & 2 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 3 & -1 & 1 \\
1 & -1 & 3 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Representation in terms of an orthonormal basis $\left\{u_{1}, \ldots, u_{q}\right\}$

$$
P=U U^{*}, \quad U:=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{q}
\end{array}\right]
$$

Example.

$$
\begin{aligned}
& \mathcal{S}:=\operatorname{span}\left\{\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{r}
0 \\
-1 \\
1 \\
0
\end{array}\right]\right\}, \text { Orthogonal proj. onto } \mathcal{S} \\
& P=\left[\begin{array}{rr}
1 / 2 & 0 \\
1 / 2 & -1 / \sqrt{2} \\
1 / 2 & 1 / \sqrt{2} \\
1 / 2 & 0
\end{array}\right]\left[\begin{array}{rrrr}
1 / 2 & 1 / 2 & 1 / 2 & 1 / 2 \\
0 & -1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right]=\frac{1}{4}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 3 & -1 & 1 \\
1 & -1 & 3 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Theorem. Let $P \in \mathbb{C}^{n \times n}$ be a projector. The following are equivalent:
(1) P is an orthogonal projector.
(2) $P^{*}=P$.

Theorem. Let $P \in \mathbb{C}^{n \times n}$ be a projector. The following are equivalent:
(1) P is an orthogonal projector.
(2) $P^{*}=P$.

Proof of $(1) \Longrightarrow(2)$

Suppose P is a projector onto the subspace \mathcal{S} with the orthonormal basis $\left\{u_{1}, \ldots, u_{q}\right\}$.

Theorem. Let $P \in \mathbb{C}^{n \times n}$ be a projector. The following are equivalent:
(1) P is an orthogonal projector.
(2) $P^{*}=P$.

Proof of $(1) \Longrightarrow(2)$

Suppose P is a projector onto the subspace \mathcal{S} with the orthonormal basis $\left\{u_{1}, \ldots, u_{q}\right\}$. Then

$$
P=U U^{*}, \quad \text { where } \quad U:=\left[\begin{array}{lll}
u_{1} & \ldots & u_{q}
\end{array}\right]
$$

satisfies $P^{*}=P$.

Theorem. Let $P \in \mathbb{C}^{n \times n}$ be a projector. The following are equivalent:
(1) P is an orthogonal projector.
(2) $P^{*}=P$.

Proof of $(2) \Longrightarrow(1)$
P is a projector onto $\operatorname{Col}(P)$ along $\operatorname{Null}(P)$. Hence, it suffices to show that $\operatorname{Null}(P)=\operatorname{Col}(P)^{\perp}$.

Theorem. Let $P \in \mathbb{C}^{n \times n}$ be a projector. The following are equivalent:
(1) P is an orthogonal projector.
(2) $P^{*}=P$.

Proof of $(2) \Longrightarrow(1)$
Let us prove $\operatorname{Null}(P) \subseteq \operatorname{Col}(P)^{\perp}$. Let $z \in \operatorname{Null}(P)$.

Theorem. Let $P \in \mathbb{C}^{n \times n}$ be a projector. The following are equivalent:
(1) P is an orthogonal projector.
(2) $P^{*}=P$.

Proof of $(2) \Longrightarrow(1)$
Let us prove $\operatorname{Null}(P) \subseteq \operatorname{Col}(P)^{\perp}$.
Let $z \in \operatorname{Null}(P)$. For every $y \in \operatorname{Col}(P)$

$$
y^{*} z=(P \widetilde{y})^{*} z=\widetilde{y}^{*} P^{*} z=\widetilde{y}^{*} P z=0
$$

for some $\widetilde{y} \in \mathbb{C}^{n}$, so $z \in \operatorname{Col}(P)^{\perp}$.

Theorem. Let $P \in \mathbb{C}^{n \times n}$ be a projector. The following are equivalent:
(1) P is an orthogonal projector.
(2) $P^{*}=P$.

Proof of (2) $\Longrightarrow(1)$
Now let us prove $\operatorname{Null}(P) \supseteq \operatorname{Col}(P)^{\perp}$. Let $z \in \operatorname{Col}(P)^{\perp}$.

Theorem. Let $P \in \mathbb{C}^{n \times n}$ be a projector. The following are equivalent:
(1) P is an orthogonal projector.
(2) $P^{*}=P$.

Proof of $(2) \Longrightarrow(1)$
Now let us prove $\operatorname{Null}(P) \supseteq \operatorname{Col}(P)^{\perp}$.
Let $z \in \operatorname{Col}(P)^{\perp}$. Then

$$
0=(P z)^{*} z=z^{*} P z=z^{*} P^{2} z=\|P z\|_{2}^{2}
$$

implying $P z=0$, so $z \in \operatorname{Null}(P)$.

