Making a Vector Horizontal by Rotators

November 1, 2018

$$
v=\left[\begin{array}{c}
x \\
x \\
x \\
\vdots \\
x \\
x
\end{array}\right] \mapsto\left[\begin{array}{c}
x \\
0 \\
x \\
\vdots \\
x \\
x
\end{array}\right] \mapsto\left[\begin{array}{c}
x \\
0 \\
0 \\
\vdots \\
x \\
x
\end{array}\right] \mapsto \quad \ldots \quad \mapsto\left[\begin{array}{c}
x \\
0 \\
0 \\
\vdots \\
0 \\
x
\end{array}\right] \mapsto\left[\begin{array}{c}
x \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right]
$$

k th step

$$
\begin{aligned}
& v^{(k)}=\left[\begin{array}{c}
a \\
0 \\
\vdots \\
0 \\
b \\
x \\
\vdots \\
x
\end{array}\right] \quad\left[\begin{array}{c}
\sqrt{a^{2}+b^{2}} \\
0 \\
\vdots \\
0 \\
0 \\
x \\
\vdots \\
x
\end{array}\right]=v^{(k+1)}:=G_{k} v^{(k)} \\
& k+1 \text { st entry } \\
& G_{k}=\left[\begin{array}{cccc}
a & & b & \\
& I & & \\
-b & & a & \\
& & & I
\end{array}\right] \\
& k+1 \text { st row }
\end{aligned}
$$

k th step

$$
\begin{aligned}
& v^{(k)}=\left[\begin{array}{c}
a \\
0 \\
\vdots \\
0 \\
b \\
x \\
\vdots \\
x
\end{array}\right] \mapsto\left[\begin{array}{c}
\sqrt{a^{2}+b^{2}} \\
0 \\
\vdots \\
0 \\
0 \\
x \\
\vdots \\
x
\end{array}\right]=v^{(k+1)}:=G_{k} v^{(k)} \\
& k+1 \text { st entry } \\
& \\
& G_{k}=\left[\begin{array}{ccc}
a / \sqrt{a^{2}+b^{2}} & b / \sqrt{a^{2}+b^{2}} & \\
-b / \sqrt{a^{2}+b^{2}} & a / \sqrt{a^{2}+b^{2}} & \\
& & I
\end{array}\right] \\
& k+1 \text { st row }
\end{aligned}
$$

