Matrix Norms

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Matrix *p*-Norm, $p \ge 1$

Recall the matrix 2-norm for a given $A \in \mathbb{C}^{m \times n}$

$$\|A\|_2 := \max_{v \in \mathbb{C}^n, \|v\|_2 = 1} \|Av\|_2 = \sigma_1(A)$$

Matrix *p*-Norm, $p \ge 1$

Recall the matrix 2-norm for a given $A \in \mathbb{C}^{m \times n}$

$$\|A\|_2 := \max_{v \in \mathbb{C}^n, \|v\|_2 = 1} \|Av\|_2 = \sigma_1(A)$$

Definition (Matrix *p*-norm)

Let $A \in \mathbb{C}^{m \times n}$.

$$\|A\|_{p} := \max_{v \in \mathbb{C}^{n}, \|v\|_{p}=1} \|Av\|_{p}$$

(Also called the matrix-norm induced by the vector *p*-norm.)

Matrix *p*-Norm, $p \ge 1$

Recall the matrix 2-norm for a given $A \in \mathbb{C}^{m \times n}$

$$\|A\|_2 := \max_{v \in \mathbb{C}^n, \|v\|_2 = 1} \|Av\|_2 = \sigma_1(A)$$

Definition (Matrix *p*-norm)

Let $A \in \mathbb{C}^{m \times n}$.

$$\|A\|_{p} := \max_{v \in \mathbb{C}^{n}, \|v\|_{p}=1} \|Av\|_{p}$$

(Also called the matrix-norm induced by the vector *p*-norm.)

► Most widely used ones: 1-norm, 2-norm, ∞-norm

Theorem (Characterization of the 1-norm)

For every $A \in \mathbb{C}^{m \times n}$, we have

$$\|A\|_1 = \max_{j=1,\dots,n} \|a_j\|_1.$$

Theorem (Characterization of the 1-norm)

For every $A \in \mathbb{C}^{m \times n}$, we have

$$\|A\|_1 = \max_{j=1,\dots,n} \|a_j\|_1.$$

Ex.

$$\left\| \begin{bmatrix} -3 & 2 & 7 \\ 2 & -9 & 0 \\ 1 & 3 & 5 \end{bmatrix} \right\|_{1} = 14$$

・ロト・西ト・ヨト・ヨト・日下 ひゃつ

Proof. Let $k \in \{1, ..., n\}$ be such that $||a_k||_1 = \max_{j=1,...,n} ||a_j||_1$.

Proof. Let $k \in \{1, ..., n\}$ be such that $||a_k||_1 = \max_{j=1,...,n} ||a_j||_1$. Consider any $v \in \mathbb{C}^n$ with $||v||_1 = 1$.

$$\|Av\|_{1} = \|v_{1}a_{1} + v_{2}a_{2} + \dots + v_{n}a_{n}\|_{1}$$

$$\leq |v_{1}|\|a_{1}\|_{1} + |v_{2}|\|a_{2}\|_{1} + \dots + |v_{n}|\|a_{n}\|_{1}$$

$$\leq \underbrace{(|v_{1}| + |v_{2}| + \dots + |v_{n}|)}_{\|v\|_{1} = 1} \|a_{k}\|_{1} = \|a_{k}\|_{1}.$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Proof. Let $k \in \{1, ..., n\}$ be such that $||a_k||_1 = \max_{j=1,...,n} ||a_j||_1$. Consider any $v \in \mathbb{C}^n$ with $||v||_1 = 1$.

$$\|Av\|_{1} = \|v_{1}a_{1} + v_{2}a_{2} + \dots + v_{n}a_{n}\|_{1}$$

$$\leq |v_{1}|\|a_{1}\|_{1} + |v_{2}|\|a_{2}\|_{1} + \dots + |v_{n}|\|a_{n}\|_{1}$$

$$\leq \underbrace{(|v_{1}| + |v_{2}| + \dots + |v_{n}|)}_{\|v\|_{1} = 1} \|a_{k}\|_{1} = \|a_{k}\|_{1}.$$

This shows that

$$\|A\|_1 \leq \|a_k\|_1 = \max_{j=1,...,n} \|a_j\|_1.$$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

It suffices to find $v \in \mathbb{C}^n$ with $||v||_1 = 1$ satisfying

 $||Av||_1 = ||a_k||_1.$

It suffices to find $v \in \mathbb{C}^n$ with $||v||_1 = 1$ satisfying

 $\|Av\|_1 = \|a_k\|_1.$

Specifically, for the *k*th column e_k of I_n , we have $||e_k||_1 = 1$ and

 $\|Ae_k\|_1 = \|a_k\|_1.$

▲□▶▲□▶▲□▶▲□▶ □ のへで

It suffices to find $v \in \mathbb{C}^n$ with $||v||_1 = 1$ satisfying

 $\|Av\|_1 = \|a_k\|_1.$

Specifically, for the *k*th column e_k of I_n , we have $||e_k||_1 = 1$ and

 $\|Ae_k\|_1 = \|a_k\|_1.$

This completes the proof of

$$\left(\|A\|_{1} = \max_{v \in \mathbb{C}^{n}, \|v\|_{2}=1} \|Av\|_{1}\right) = \left(\|a_{k}\|_{1} = \max_{j=1,...,n} \|a_{j}\|_{1}\right).$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

Matrix ∞ -Norm

Theorem (Characterization of the ∞ -norm)

For every $A \in \mathbb{C}^{m \times n}$, we have

$$\|A\|_{\infty} = \max_{j=1,...,m} \|A(j,:)^T\|_1.$$

Matrix ∞ -Norm

Theorem (Characterization of the ∞ -norm)

For every $A \in \mathbb{C}^{m \times n}$, we have

$$\|A\|_{\infty} = \max_{j=1,...,m} \|A(j,:)^T\|_1.$$

Ex.

$$\left\| \begin{bmatrix} -3 & 2 & 7 \\ 2 & -9 & 0 \\ 1 & 3 & 5 \end{bmatrix} \right\|_{\infty} = 12$$

・ロト・西ト・ヨト・ヨト・日下 ひゃつ

Frobenius Norm

Given $A \in \mathbb{C}^{m \times n}$,

$$\|A\|_F := \sqrt{\sum_{j=1}^m \sum_{k=1}^n a_{jk}^2} = \sqrt{\operatorname{trace}(A^T A)}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Not induced by any vector norm.