Convergence of Power Iteration

Rate-of-Convergence

A sequence $\left\{q^{(k)}\right\}$ such that $\lim _{k \rightarrow \infty} q^{(k)}=q_{*}$

- Converges linearly if

$$
\lim _{k \rightarrow \infty} \frac{\left\|q^{(k+1)}-q_{*}\right\|_{2}}{\left\|q^{(k)}-q_{*}\right\|_{2}}=\mu
$$

for some $\mu \in(0,1)$.
(e.g. $\left\{1 / 2^{k}\right\}$ converges to 0 linearly)

Rate-of-Convergence

A sequence $\left\{q^{(k)}\right\}$ such that $\lim _{k \rightarrow \infty} q^{(k)}=q_{*}$

- Converges linearly if

$$
\lim _{k \rightarrow \infty} \frac{\left\|q^{(k+1)}-q_{*}\right\|_{2}}{\left\|q^{(k)}-q_{*}\right\|_{2}}=\mu
$$

for some $\mu \in(0,1)$.
(e.g. $\left\{1 / 2^{k}\right\}$ converges to 0 linearly)

- Converges superlinearly if

$$
\lim _{k \rightarrow \infty} \frac{\left\|q^{(k+1)}-q_{*}\right\|_{2}}{\left\|q^{(k)}-q_{*}\right\|_{2}}=0
$$

(e.g. $\{1 / k!\}$ converges to 0 superlinearly)

Rate-of-Convergence

- Converges quadratically if

$$
\lim _{k \rightarrow \infty} \frac{\left\|q^{(k+1)}-q_{*}\right\|_{2}}{\left\|q^{(k)}-q_{*}\right\|_{2}^{2}}=\mu
$$

for some $\mu>0$.
(e.g. $\left\{1 / 10^{\left(2^{k}\right)}\right\}$ converges to 0 quadratically)

Rate-of-Convergence

- Converges quadratically if

$$
\lim _{k \rightarrow \infty} \frac{\left\|q^{(k+1)}-q_{*}\right\|_{2}}{\left\|q^{(k)}-q_{*}\right\|_{2}^{2}}=\mu
$$

for some $\mu>0$.
(e.g. $\left\{1 / 10^{\left(2^{k}\right)}\right\}$ converges to 0 quadratically)

- Converges with order $p>1$ if

$$
\lim _{k \rightarrow \infty} \frac{\left\|q^{(k+1)}-q_{*}\right\|_{2}}{\left\|q^{(k)}-q_{*}\right\|_{2}^{p}}=0
$$

for some $\mu>0$.
(e.g. $\left\{1 / 10^{\left(3^{k}\right)}\right\}$ converges to 0 with order 3)

Convergence of Power Iteration

Given $A \in \mathbb{C}^{n \times n}$ and $q^{(0)} \in \mathbb{C}^{n}$,
Power iteration generates a sequence $\left\{q^{(k)}\right\}$ such that

$$
q^{(k+1)}:=\frac{A q^{(k)}}{\left\|A q^{(k)}\right\|_{2}} .
$$

- $\lambda_{1}, \ldots, \lambda_{n}$ denotes eigenvalues such that

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right| .
$$

- $v^{(j)}$ is the eigenvector corresponding to λ_{j}.

Convergence of Power Iteration

Convergence

There exists a sequence $\left\{c_{k}\right\}$ of real numbers such that $\lim _{k \rightarrow \infty}\left|c_{k}\right|=1$ and

$$
\left\|q^{(k)}-c_{k} v^{(1)}\right\|_{2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

We write

$$
\operatorname{span}\left\{q^{(k)}\right\} \longrightarrow \operatorname{span}\left\{v^{(1)}\right\} \quad \text { as } \quad k \rightarrow \infty
$$

Convergence of Power Iteration

Rate-of-Convergence

$$
\frac{\left\|q^{(k+1)}-c_{k+1} v^{(1)}\right\|_{2}}{\left\|q^{(k)}-c_{k} v^{(1)}\right\|_{2}}=\left|\frac{\lambda_{2}}{\lambda_{1}}\right|
$$

Convergence of Power Iteration

 Ex.$$
A=\left[\begin{array}{rrr}
-3 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\lambda_{1}=-3, \lambda_{2}=2, \lambda_{3}=1, v_{1}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{\top}
$$

Convergence of Power Iteration

 Ex.$$
A=\left[\begin{array}{rrr}
-3 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\lambda_{1}=-3, \lambda_{2}=2, \lambda_{3}=1, v_{1}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}
$$

- Convergence

$$
\operatorname{span}\left\{q^{(k)}\right\} \longrightarrow \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

Convergence of Power Iteration

 Ex.$$
A=\left[\begin{array}{rrr}
-3 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\lambda_{1}=-3, \lambda_{2}=2, \lambda_{3}=1, v_{1}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}
$$

- Convergence

$$
\operatorname{span}\left\{q^{(k)}\right\} \longrightarrow \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

- Rate-of-convergence

$$
\frac{\left\|q^{(k+1)}-c_{k+1} v^{(1)}\right\|_{2}}{\left\|q^{(k)}-c_{k} v^{(1)}\right\|_{2}}=\frac{2}{3}
$$

