## Computation of All Eigenvalues

## Similarity Transformations

For an invertible $S \in \mathbb{C}^{n \times n}$, the transformation

$$
A \mapsto S A S^{-1}
$$

## Similarity Transformations

For an invertible $S \in \mathbb{C}^{n \times n}$, the transformation

$$
A \mapsto S A S^{-1}
$$

$$
\operatorname{det}\left(S A S^{-1}-\lambda I\right)=\operatorname{det}\left(S(A-\lambda I) S^{-1}\right)
$$

## Similarity Transformations

For an invertible $S \in \mathbb{C}^{n \times n}$, the transformation

$$
A \mapsto S A S^{-1}
$$

$$
\begin{aligned}
\operatorname{det}\left(S A S^{-1}-\lambda I\right) & =\operatorname{det}\left(S(A-\lambda I) S^{-1}\right) \\
& =\operatorname{det}(S) \operatorname{det}(A-\lambda I) \operatorname{det}\left(S^{-1}\right)
\end{aligned}
$$

## Similarity Transformations

For an invertible $S \in \mathbb{C}^{n \times n}$, the transformation

$$
A \mapsto S A S^{-1}
$$

$$
\begin{aligned}
\operatorname{det}\left(S A S^{-1}-\lambda I\right) & =\operatorname{det}\left(S(A-\lambda I) S^{-1}\right) \\
& =\operatorname{det}(S) \operatorname{det}(A-\lambda I) \operatorname{det}\left(S^{-1}\right) \\
& =\operatorname{det}\left(S S^{-1}\right) \operatorname{det}(A-\lambda I)
\end{aligned}
$$

## Similarity Transformations

For an invertible $S \in \mathbb{C}^{n \times n}$, the transformation

$$
A \mapsto S A S^{-1}
$$

$$
\begin{aligned}
\operatorname{det}\left(S A S^{-1}-\lambda I\right) & =\operatorname{det}\left(S(A-\lambda I) S^{-1}\right) \\
& =\operatorname{det}(S) \operatorname{det}(A-\lambda I) \operatorname{det}\left(S^{-1}\right) \\
& =\operatorname{det}\left(S S^{-1}\right) \operatorname{det}(A-\lambda I) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

## Similarity Transformations

For an invertible $S \in \mathbb{C}^{n \times n}$, the transformation

$$
A \mapsto S A S^{-1}
$$

$$
\begin{aligned}
\operatorname{det}\left(S A S^{-1}-\lambda I\right) & =\operatorname{det}\left(S(A-\lambda I) S^{-1}\right) \\
& =\operatorname{det}(S) \operatorname{det}(A-\lambda I) \operatorname{det}\left(S^{-1}\right) \\
& =\operatorname{det}\left(S S^{-1}\right) \operatorname{det}(A-\lambda I) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

$A$ and $S A S^{-1}$ have

- the same characteristic polynomial,


## Similarity Transformations

## For an invertible $S \in \mathbb{C}^{n \times n}$, the transformation

$$
A \mapsto S A S^{-1}
$$

$$
\begin{aligned}
\operatorname{det}\left(S A S^{-1}-\lambda I\right) & =\operatorname{det}\left(S(A-\lambda I) S^{-1}\right) \\
& =\operatorname{det}(S) \operatorname{det}(A-\lambda I) \operatorname{det}\left(S^{-1}\right) \\
& =\operatorname{det}\left(S S^{-1}\right) \operatorname{det}(A-\lambda I) \\
& =\operatorname{det}(A-\lambda I)
\end{aligned}
$$

$A$ and $S A S^{-1}$ have

- the same characteristic polynomial,
- have the same set of eigenvalues.


## Unitary Similarity Transformation

For a unitary $Q \in \mathbb{C}^{n \times n}$, the transformation

$$
A \mapsto Q A Q^{*}
$$

- Recall $Q^{-1}=Q^{*}$ for a unitary $Q$.


## Computing All Eigenvalues, Outline

1. Reduction into Hessenberg Form

Form unitary $Q \in \mathbb{C}^{n \times n}$ such that

$$
Q^{*} A Q=H
$$

is Hessenberg.

## Computing All Eigenvalues, Outline

1. Reduction into Hessenberg Form

Form unitary $Q \in \mathbb{C}^{n \times n}$ such that

$$
Q^{*} A Q=H
$$

is Hessenberg.
(See the midterm question 4 , \# flops $\sim 10 n^{3} / 3$ )

## Computing All Eigenvalues, Outline

1. Reduction into Hessenberg Form

Form unitary $Q \in \mathbb{C}^{n \times n}$ such that

$$
Q^{*} A Q=H
$$

is Hessenberg.
(See the midterm question 4 , \# flops $\sim 10 n^{3} / 3$ )
2. The QR Algorithm

Form unitary $Q_{1}, \ldots, Q_{k} \in \mathbb{C}^{n \times n}$ such that

$$
H_{k}:=Q_{k}^{*} \ldots Q_{1}^{*} H Q_{1} \ldots Q_{k}
$$

becomes upper triangular as $k \rightarrow \infty$.

## Computing All Eigenvalues, Outline

1. Reduction into Hessenberg Form

Form unitary $Q \in \mathbb{C}^{n \times n}$ such that

$$
Q^{*} A Q=H
$$

is Hessenberg.
(See the midterm question 4 , \# flops $\sim 10 n^{3} / 3$ )
2. The QR Algorithm

Form unitary $Q_{1}, \ldots, Q_{k} \in \mathbb{C}^{n \times n}$ such that

$$
H_{k}:=Q_{k}^{*} \ldots Q_{1}^{*} H Q_{1} \ldots Q_{k}
$$

becomes upper triangular as $k \rightarrow \infty$.

- $A, H, H_{1}, H_{2}, H_{3}, \ldots$ all have the same eigenvalues.


## Computing All Eigenvalues, Outline

1. Reduction into Hessenberg Form

Form unitary $Q \in \mathbb{C}^{n \times n}$ such that

$$
Q^{*} A Q=H
$$

is Hessenberg.
(See the midterm question 4 , \# flops $\sim 10 n^{3} / 3$ )
2. The QR Algorithm

Form unitary $Q_{1}, \ldots, Q_{k} \in \mathbb{C}^{n \times n}$ such that

$$
H_{k}:=Q_{k}^{*} \ldots Q_{1}^{*} H Q_{1} \ldots Q_{k}
$$

becomes upper triangular as $k \rightarrow \infty$.

- $A, H, H_{1}, H_{2}, H_{3}, \ldots$ all have the same eigenvalues.
- For an upper triangular matrix, the eigenvalues are the diagonal entries.

