Why the QR Algorithm Works

A Generalization of the Power Iteration

Simultaneous Power Iteration

(1) \widetilde{Q}_{0} - matrix with orthonormal columns
(2) $\widetilde{Q}_{k+1} \widetilde{R}_{k+1}=H \widetilde{Q}_{k}$ (a reduced $Q R$ factorization on the left)
(3) $H_{k}=\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k}$

A Generalization of the Power Iteration

Simultaneous Power Iteration

(1) \widetilde{Q}_{0} - matrix with orthonormal columns
(2) $\widetilde{Q}_{k+1} \widetilde{R}_{k+1}=H \widetilde{Q}_{k}$ (a reduced $Q R$ factorization on the left)
(3) $H_{k}=\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k}$

Assume \widetilde{Q}_{k} is square

$$
H_{k}=\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k}
$$

A Generalization of the Power Iteration

Simultaneous Power Iteration

(1) \widetilde{Q}_{0} - matrix with orthonormal columns
(2) $\widetilde{Q}_{k+1} \widetilde{R}_{k+1}=H \widetilde{Q}_{k}$ (a reduced $Q R$ factorization on the left)
(3) $H_{k}=\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k}$

Assume \widetilde{Q}_{k} is square

$$
\begin{aligned}
H_{k} & =\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k} \\
& =\widetilde{Q}_{k}^{*} \widetilde{Q}_{k+1} \widetilde{R}_{k+1}
\end{aligned}
$$

A Generalization of the Power Iteration

Simultaneous Power Iteration

(1) \widetilde{Q}_{0} - matrix with orthonormal columns
(2) $\widetilde{Q}_{k+1} \widetilde{R}_{k+1}=H \widetilde{Q}_{k}$ (a reduced $Q R$ factorization on the left)
(3) $H_{k}=\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k}$

Assume \widetilde{Q}_{k} is square

$$
\begin{aligned}
H_{k} & =\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k} \\
& =\widetilde{Q}_{k}^{*} \widetilde{Q}_{k+1} \widetilde{R}_{k+1} \\
H_{k+1} & =\widetilde{Q}_{k+1}^{*} H \widetilde{Q}_{k+1}
\end{aligned}
$$

A Generalization of the Power Iteration

Simultaneous Power Iteration

(1) \widetilde{Q}_{0} - matrix with orthonormal columns
(2) $\widetilde{Q}_{k+1} \widetilde{R}_{k+1}=H \widetilde{Q}_{k}$ (a reduced $Q R$ factorization on the left)
(3) $H_{k}=\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k}$

Assume \widetilde{Q}_{k} is square

$$
\begin{aligned}
H_{k} & =\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k} \\
& =\widetilde{Q}_{k}^{*} \widetilde{Q}_{k+1} \widetilde{R}_{k+1} \\
H_{k+1} & =\widetilde{Q}_{k+1}^{*} H \widetilde{Q}_{k+1} \\
& =\widetilde{R}_{k+1} \widetilde{Q}_{k}^{*} \widetilde{Q}_{k+1}
\end{aligned}
$$

A Generalization of the Power Iteration

Simultaneous Power Iteration

(1) \widetilde{Q}_{0} - matrix with orthonormal columns
(2) $\widetilde{Q}_{k+1} \widetilde{R}_{k+1}=H \widetilde{Q}_{k}$ (a reduced QR factorization on the left)
(3) $H_{k}=\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k}$

Assume \widetilde{Q}_{k} is square

$$
\begin{aligned}
H_{k} & =\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k} \\
& =\underbrace{\widetilde{Q}_{k+1}^{*} \widetilde{Q}_{k+1}}_{Q_{k+1}^{*}} \widetilde{R}_{k+1} \\
H_{k+1} & =\widetilde{Q}_{k+1}^{*} H \widetilde{Q}_{k+1} \\
& =\widetilde{R}_{k+1} \underbrace{\widetilde{Q}_{k}^{*} \widetilde{Q}_{k+1}}_{Q_{k+1}}
\end{aligned}
$$

A Generalization of the Power Iteration

Assume \widetilde{Q}_{k} is square

$$
\begin{aligned}
H_{k} & =\widetilde{Q}_{k}^{*} H \widetilde{Q}_{k} \\
& =\underbrace{\widetilde{Q}_{k}^{*} \widetilde{Q}_{k+1}}_{Q_{k+1}} \widetilde{R}_{k+1} \\
H_{k+1} & =\widetilde{Q}_{k+1}^{*} H \widetilde{Q}_{k+1} \\
& =\widetilde{R}_{k+1} \underbrace{\widetilde{Q}_{k}^{*} \widetilde{Q}_{k+1}}_{Q_{k+1}}
\end{aligned}
$$

$$
\text { - } Q_{k+1}=\widetilde{Q}_{k}^{*} \tilde{Q}_{k+1} \Longrightarrow \widetilde{Q}_{k+1}=\widetilde{Q}_{k} Q_{k+1}
$$

Equivalence to the Simultaneous Power Iteration

Recalling one iteration of the QR algorithm

$$
H_{k}=Q_{k+1} R_{k+1}, \quad H_{k+1}=R_{k+1} Q_{k+1}
$$

Theorem
Simultaneous power iteration with $\widetilde{Q}_{0}=I_{n}$ is equivalent to the QR algorithm (without shifts). In particular,
(i) both generate the same sequence $\left\{H_{k}\right\}$,
(ii) $\widetilde{Q}_{k}=Q_{1} Q_{2} \ldots Q_{k}$.

