Computation of Singular Values

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Given $A \in \mathbb{C}^{m \times n}$,

1. <u>REDUCTION INTO BIDIAGONAL FORM</u> Form unitary $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ such that

$$UAV = B$$

is bidiagonal.

Outline

Given $A \in \mathbb{C}^{m \times n}$,

1. <u>REDUCTION INTO BIDIAGONAL FORM</u> Form unitary $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ such that

$$UAV = B$$

is bidiagonal.

2. <u>THE QR ALGORITHM</u> Form unitary $U_1, \ldots, U_k \in \mathbb{C}^{m \times m}$ and unitary $V_1, \ldots, V_k \in \mathbb{C}^{n \times n}$ such that

$$B_k := U_k \ldots U_1 B V_1 \ldots V_k$$

becomes diagonal as $k \to \infty$.

・ロト・(中下・(中下・(日下・))

Outline

Given $A \in \mathbb{C}^{m \times n}$,

1. <u>REDUCTION INTO BIDIAGONAL FORM</u> Form unitary $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ such that

$$UAV = B$$

is bidiagonal.

2. <u>THE QR ALGORITHM</u> Form unitary $U_1, \ldots, U_k \in \mathbb{C}^{m \times m}$ and unitary $V_1, \ldots, V_k \in \mathbb{C}^{n \times n}$ such that

$$B_k := U_k \ldots U_1 B V_1 \ldots V_k$$

becomes diagonal as $k \to \infty$.

• $A, B, B_1, B_2, B_3, \ldots$ all have the same singular values.

Generates a sequence $\{B_k\}$ such that $B_0 = B$ and B_{k+1} , B_k are related as follows:

(a) Let

$$B_k^* B_k - \sigma_k I = Q_{k+1} R_{k+1}$$

$$B_k B_k^* - \widetilde{\sigma}_k I = P_{k+1} S_{k+1}$$

be QR factorizations (for given shifts $\sigma_k, \tilde{\sigma}_k$). (b) $B_{k+1} := P_{k+1}^* B_k Q_{k+1}$

・ロト ・ 母 ト ・ ヨ ト ・ 国 ・ クタマ

This is a QR algorithm operating simultaneously on B^*B and BB^* , that is

This is a QR algorithm operating simultaneously on B^*B and BB^* , that is

1. Recalling $B_k^* B_k - \sigma_k I = Q_{k+1} R_{k+1}$,

This is a QR algorithm operating simultaneously on B^*B and BB^* , that is

1. Recalling $B_k^* B_k - \sigma_k I = Q_{k+1} R_{k+1}$,

$$B_{k+1}^* B_{k+1} = Q_{k+1}^* B_k^* B_k Q_{k+1}$$

= $Q_{k+1}^* (Q_{k+1} R_{k+1} + \sigma_k I) Q_{k+1}$
= $R_{k+1} Q_{k+1} + \sigma_k I$

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

This is a QR algorithm operating simultaneously on B^*B and BB^* , that is

1. Recalling $B_k^* B_k - \sigma_k I = Q_{k+1} R_{k+1}$,

$$B_{k+1}^* B_{k+1} = Q_{k+1}^* B_k^* B_k Q_{k+1}$$

= $Q_{k+1}^* (Q_{k+1} R_{k+1} + \sigma_k I) Q_{k+1}$
= $R_{k+1} Q_{k+1} + \sigma_k I$

2. Recalling $B_k B_k^* - \widetilde{\sigma}_k I = P_{k+1} S_{k+1}$,

▲□▶▲□▶▲□▶▲□▶ □ のへで

This is a QR algorithm operating simultaneously on B^*B and BB^* , that is

1. Recalling $B_k^* B_k - \sigma_k I = Q_{k+1} R_{k+1}$,

$$B_{k+1}^* B_{k+1} = Q_{k+1}^* B_k^* B_k Q_{k+1}$$

= $Q_{k+1}^* (Q_{k+1} R_{k+1} + \sigma_k I) Q_{k+1}$
= $R_{k+1} Q_{k+1} + \sigma_k I$

2. Recalling $B_k B_k^* - \tilde{\sigma}_k I = P_{k+1} S_{k+1}$,

$$B_{k+1}B_{k+1}^{*} = P_{k+1}^{*}B_{k}B_{k}^{*}P_{k+1}$$

= $P_{k+1}^{*}(P_{k+1}S_{k+1} + \widetilde{\sigma_{k}}I)P_{k+1}$
= $S_{k+1}P_{k+1} + \widetilde{\sigma_{k}}I$

Remarks

1. It can be shown that the sequence $\{B_k\}$ is bidiagonal.

Remarks

1. It can be shown that the sequence $\{B_k\}$ is bidiagonal.

2. The QR factorizations

$$B_k^* B_k - \sigma_k I = Q_{k+1} R_{k+1}$$
$$B_k B_k^* - \widetilde{\sigma}_k I = P_{k+1} S_{k+1}$$

can be computed at a cost of O(m + n) flops.

Remarks

1. It can be shown that the sequence $\{B_k\}$ is bidiagonal.

2. The QR factorizations

$$B_k^* B_k - \sigma_k I = Q_{k+1} R_{k+1}$$
$$B_k B_k^* - \widetilde{\sigma}_k I = P_{k+1} S_{k+1}$$

can be computed at a cost of O(m + n) flops.

3. The multiplication

$$P_{k+1}^* B_k Q_{k+1}$$

can be performed at a cost of O(m + n) flops.