Computation of Singular Values

Outline

Given $A \in \mathbb{C}^{m \times n}$,

1. Reduction into Bidiagonal Form

Form unitary $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ such that

$$
U A V=B
$$

is bidiagonal.

Outline

Given $A \in \mathbb{C}^{m \times n}$,

1. Reduction into Bidiagonal Form

Form unitary $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ such that

$$
U A V=B
$$

is bidiagonal.
2. The QR Algorithm

Form unitary $U_{1}, \ldots, U_{k} \in \mathbb{C}^{m \times m}$ and unitary $V_{1}, \ldots, V_{k} \in \mathbb{C}^{n \times n}$ such that

$$
B_{k}:=U_{k} \ldots U_{1} B V_{1} \ldots V_{k}
$$

becomes diagonal as $k \rightarrow \infty$.

Outline

Given $A \in \mathbb{C}^{m \times n}$,

1. Reduction into Bidiagonal Form

Form unitary $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ such that

$$
U A V=B
$$

is bidiagonal.
2. The QR Algorithm

Form unitary $U_{1}, \ldots, U_{k} \in \mathbb{C}^{m \times m}$ and unitary $V_{1}, \ldots, V_{k} \in \mathbb{C}^{n \times n}$ such that

$$
B_{k}:=U_{k} \ldots U_{1} B V_{1} \ldots V_{k}
$$

becomes diagonal as $k \rightarrow \infty$.

- $A, B, B_{1}, B_{2}, B_{3}, \ldots$ all have the same singular values.

The QR Algorithm for Singular Values

Generates a sequence $\left\{B_{k}\right\}$ such that $B_{0}=B$ and B_{k+1}, B_{k} are related as follows:
(a) Let

$$
\begin{aligned}
& B_{k}^{*} B_{k}-\sigma_{k} I=Q_{k+1} R_{k+1} \\
& B_{k} B_{k}^{*}-\tilde{\sigma}_{k} I=P_{k+1} S_{k+1}
\end{aligned}
$$

be QR factorizations (for given shifts $\sigma_{k}, \widetilde{\sigma}_{k}$).
(b) $B_{k+1}:=P_{k+1}^{*} B_{k} Q_{k+1}$

The QR Algorithm for Singular Values

This is a QR algorithm operating simultaneously on $B^{*} B$ and $B B^{*}$, that is

The QR Algorithm for Singular Values

This is a QR algorithm operating simultaneously on $B^{*} B$ and $B B^{*}$, that is

1. Recalling $B_{k}^{*} B_{k}-\sigma_{k} I=Q_{k+1} R_{k+1}$,

The QR Algorithm for Singular Values

This is a QR algorithm operating simultaneously on $B^{*} B$ and $B B^{*}$, that is

1. Recalling $B_{k}^{*} B_{k}-\sigma_{k} I=Q_{k+1} R_{k+1}$,

$$
\begin{aligned}
B_{k+1}^{*} B_{k+1} & =Q_{k+1}^{*} B_{k}^{*} B_{k} Q_{k+1} \\
& =Q_{k+1}^{*}\left(Q_{k+1} R_{k+1}+\sigma_{k} I\right) Q_{k+1} \\
& =R_{k+1} Q_{k+1}+\sigma_{k} I
\end{aligned}
$$

The QR Algorithm for Singular Values

This is a QR algorithm operating simultaneously on $B^{*} B$ and $B B^{*}$, that is

1. Recalling $B_{k}^{*} B_{k}-\sigma_{k} I=Q_{k+1} R_{k+1}$,

$$
\begin{aligned}
B_{k+1}^{*} B_{k+1} & =Q_{k+1}^{*} B_{k}^{*} B_{k} Q_{k+1} \\
& =Q_{k+1}^{*}\left(Q_{k+1} R_{k+1}+\sigma_{k} I\right) Q_{k+1} \\
& =R_{k+1} Q_{k+1}+\sigma_{k} I
\end{aligned}
$$

2. Recalling $B_{k} B_{k}^{*}-\widetilde{\sigma}_{k} I=P_{k+1} S_{k+1}$,

The QR Algorithm for Singular Values

This is a QR algorithm operating simultaneously on $B^{*} B$ and $B B^{*}$, that is

1. Recalling $B_{k}^{*} B_{k}-\sigma_{k} I=Q_{k+1} R_{k+1}$,

$$
\begin{aligned}
B_{k+1}^{*} B_{k+1} & =Q_{k+1}^{*} B_{k}^{*} B_{k} Q_{k+1} \\
& =Q_{k+1}^{*}\left(Q_{k+1} R_{k+1}+\sigma_{k} I\right) Q_{k+1} \\
& =R_{k+1} Q_{k+1}+\sigma_{k} I
\end{aligned}
$$

2. Recalling $B_{k} B_{k}^{*}-\widetilde{\sigma}_{k} I=P_{k+1} S_{k+1}$,

$$
\begin{aligned}
B_{k+1} B_{k+1}^{*} & =P_{k+1}^{*} B_{k} B_{k}^{*} P_{k+1} \\
& =P_{k+1}^{*}\left(P_{k+1} S_{k+1}+\widetilde{\sigma_{k}} I\right) P_{k+1} \\
& =S_{k+1} P_{k+1}+\widetilde{\sigma}_{k} I
\end{aligned}
$$

Remarks

1. It can be shown that the sequence $\left\{B_{k}\right\}$ is bidiagonal.

Remarks

1. It can be shown that the sequence $\left\{B_{k}\right\}$ is bidiagonal.
2. The QR factorizations

$$
\begin{aligned}
& B_{k}^{*} B_{k}-\sigma_{k} I=Q_{k+1} R_{k+1} \\
& B_{k} B_{k}^{*}-\tilde{\sigma}_{k} I=P_{k+1} S_{k+1}
\end{aligned}
$$

can be computed at a cost of $O(m+n)$ flops.

Remarks

1. It can be shown that the sequence $\left\{B_{k}\right\}$ is bidiagonal.
2. The QR factorizations

$$
\begin{aligned}
& B_{k}^{*} B_{k}-\sigma_{k} I=Q_{k+1} R_{k+1} \\
& B_{k} B_{k}^{*}-\tilde{\sigma}_{k} I=P_{k+1} S_{k+1}
\end{aligned}
$$

can be computed at a cost of $O(m+n)$ flops.
3. The multiplication

$$
P_{k+1}^{*} B_{k} Q_{k+1}
$$

can be performed at a cost of $O(m+n)$ flops.

