Schur Factorization and PSD Hermitian Matrices

September 27, 2018

The Schur factorization for $A \in \mathbb{C}^{n \times n}$ is of the form

 $A = QTQ^*$

where

- $Q \in \mathbb{C}^{n \times n}$ is unitary,
- $T \in \mathbb{C}^{n \times n}$ is upper triangular.

Example.

$$\underbrace{\begin{bmatrix} 6 & 2 \\ -4 & 0 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}}_{Q} \underbrace{\begin{bmatrix} 4 & 6 \\ 0 & 2 \end{bmatrix}}_{T} \underbrace{\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}}_{Q^{*}}$$

Theorem 0.1 (Existence). *Every matrix* $A \in \mathbb{C}^{n \times n}$ *has a Schur factorization.*

Base case n = 1 is trivial, i.e., $A = 1 \cdot A \cdot 1^*$.

Base case n = 1 is trivial, i.e., $A = 1 \cdot A \cdot 1^*$.

Inductive case

Let λ be an eigenvalue and $v\in\mathbb{C}^n$ be a corresponding eigenvector. Form a unitary matrix

$$\widetilde{Q} = \left[v \ \widetilde{\widetilde{Q}} \right], \quad \text{where} \quad \widetilde{\widetilde{Q}} = \left[q_2 \ \dots \ q_n \right].$$

Base case n = 1 is trivial, i.e., $A = 1 \cdot A \cdot 1^*$.

Inductive case

Let λ be an eigenvalue and $v\in\mathbb{C}^n$ be a corresponding eigenvector. Form a unitary matrix

$$\widetilde{Q} = \left[v \ \widetilde{\widetilde{Q}} \right], \quad \text{where} \quad \widetilde{\widetilde{Q}} = \left[q_2 \ \dots \ q_n \right].$$

Observe

$$\begin{split} \widetilde{Q}^* A \widetilde{Q} &= \widetilde{Q}^* \left[\begin{array}{cc} \lambda v & A \widetilde{\widetilde{Q}} \end{array} \right] \\ &= \left[\begin{array}{cc} \lambda \widetilde{Q}^* v & \widetilde{Q}^* A \widetilde{\widetilde{Q}} \end{array} \right] &= \left[\begin{array}{cc} \lambda & w^T \\ 0 & \widehat{A} \end{array} \right] \end{split}$$

for some $w \in \mathbb{C}^n$ and $\widehat{A} \in \mathbb{C}^{(n-1) \times (n-1)}$.

As the inductive hypothesis \widehat{A} has a Schur factorization

$$\widehat{A} = \widehat{Q}\widehat{T}\widehat{Q}^*$$

where $\widehat{T} \in \mathbb{C}^{(n-1)\times(n-1)}$ is upper triangular, $\widehat{Q} \in \mathbb{C}^{(n-1)\times(n-1)}$ is unitary. As the inductive hypothesis \widehat{A} has a Schur factorization

$$\widehat{A} = \widehat{Q}\widehat{T}\widehat{Q}^*$$

where $\widehat{T} \in \mathbb{C}^{(n-1) \times (n-1)}$ is upper triangular, $\widehat{Q} \in \mathbb{C}^{(n-1) \times (n-1)}$ is unitary.

It follows that

$$\widetilde{Q}^* A \widetilde{Q} = \begin{bmatrix} \lambda & w^T \\ 0 & \widehat{Q} \widehat{T} \widehat{Q}^* \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \widehat{Q} \end{bmatrix} \begin{bmatrix} \lambda & w^T \widehat{Q} \\ 0 & \widehat{T} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \widehat{Q}^* \end{bmatrix}$$

As the inductive hypothesis \widehat{A} has a Schur factorization

$$\widehat{A} = \widehat{Q}\widehat{T}\widehat{Q}^*$$

where $\widehat{T} \in \mathbb{C}^{(n-1) \times (n-1)}$ is upper triangular, $\widehat{Q} \in \mathbb{C}^{(n-1) \times (n-1)}$ is unitary.

It follows that

$$\widetilde{Q}^* A \widetilde{Q} = \begin{bmatrix} \lambda & w^T \\ 0 & \widehat{Q} \widehat{T} \widehat{Q}^* \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \widehat{Q} \end{bmatrix} \begin{bmatrix} \lambda & w^T \widehat{Q} \\ 0 & \widehat{T} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \widehat{Q}^* \end{bmatrix}$$

that is

$$A = \widetilde{Q} \begin{bmatrix} 1 & 0 \\ 0 & \widehat{Q} \end{bmatrix} \underbrace{\begin{bmatrix} \lambda & w^T \widehat{Q} \\ 0 & \widehat{T} \end{bmatrix}}_{T} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & \widehat{Q}^* \end{bmatrix}}_{Q^*}$$

as desired.

Hermitian Positive Semi-Definite (PSD) Matrices

Let $A \in \mathbb{C}^{n \times n}$, $A^* = A$ and

 $v^*Av \ge 0 \qquad \forall v \in \mathbb{C}^n.$

Theorem 0.2. Let $A \in \mathbb{C}^{n \times n}$ be Hermitian. The following are equivalent:

- (i) A is positive semi-definite.
- (ii) All eigenvalues of A are nonnegative.

Example.

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

with eigenvalues $\lambda_1 = 4$, $\lambda = 2$.

A is positive semi-definite.

Proof of \sim (ii) \Longrightarrow \sim (i)

Suppose A has a negative eigenvalue λ with a corresponding unit eigenvector v.

$$v^*Av = v^*\lambda v = \lambda \|v\|^2 = \lambda < 0$$

Hence, A is not positive semi-definite.

Proof of (ii) \Longrightarrow (i)

Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of A, all nonnegative. v_1, \ldots, v_n be corresponding eigenvectors s.t. $\{v_1, \ldots, v_n\}$ is orthonormal.

Proof of (ii) \Longrightarrow (i)

Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of A, all nonnegative. v_1, \ldots, v_n be corresponding eigenvectors s.t. $\{v_1, \ldots, v_n\}$ is orthonormal.

Every $v \in \mathbb{C}^n$ can be written of the form

 $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$

for some $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$

Proof of (ii) \Longrightarrow (i)

Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of A, all nonnegative. v_1, \ldots, v_n be corresponding eigenvectors s.t. $\{v_1, \ldots, v_n\}$ is orthonormal.

Every $v \in \mathbb{C}^n$ can be written of the form

 $v = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n$

for some $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$, and

$$v^*Av = (\overline{\alpha}_1v_1^* + \dots + \overline{\alpha}_nv_n^*)(\alpha_1\lambda_1v_1 + \dots + \alpha_n\lambda_nv_n)$$

= $|\alpha_1|^2\lambda_1v_1^*v_1 + \dots + |\alpha_n|^2\lambda_nv_n^*v_n$
= $|\alpha_1|^2\lambda_1 + \dots + |\alpha_n|^2\lambda_n \ge 0.$

Hence, *A* is positive semi-definite.