Schur Factorization and PSD Hermitian Matrices

September 27, 2018

The Schur factorization for $A \in \mathbb{C}^{n \times n}$ is of the form

$$
A=Q T Q^{*}
$$

where

- $Q \in \mathbb{C}^{n \times n}$ is unitary,
- $T \in \mathbb{C}^{n \times n}$ is upper triangular.

Example.

$$
\underbrace{\left[\begin{array}{rr}
6 & 2 \\
-4 & 0
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{rr}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{ll}
4 & 6 \\
0 & 2
\end{array}\right]}_{T} \underbrace{\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]}_{Q^{*}}
$$

Theorem 0.1 (Existence). Every matrix $A \in \mathbb{C}^{n \times n}$ has a Schur factorization.

The proof of existence is by induction on n.

The proof of existence is by induction on n.

Base case $n=1$ is trivial, i.e., $A=1 \cdot A \cdot 1^{*}$.

The proof of existence is by induction on n.

Base case $n=1$ is trivial, i.e., $A=1 \cdot A \cdot 1^{*}$.

Inductive case

Let λ be an eigenvalue and $v \in \mathbb{C}^{n}$ be a corresponding eigenvector. Form a unitary matrix

$$
\widetilde{Q}=\left[\begin{array}{ll}
v & \widetilde{\widetilde{Q}}
\end{array}\right], \quad \text { where } \quad \widetilde{\widetilde{Q}}=\left[\begin{array}{lll}
q_{2} & \ldots & q_{n}
\end{array}\right] .
$$

The proof of existence is by induction on n.

Base case $n=1$ is trivial, i.e., $A=1 \cdot A \cdot 1^{*}$.

Inductive case

Let λ be an eigenvalue and $v \in \mathbb{C}^{n}$ be a corresponding eigenvector. Form a unitary matrix

$$
\widetilde{Q}=\left[\begin{array}{ll}
v & \widetilde{\widetilde{Q}}
\end{array}\right], \quad \text { where } \quad \widetilde{\widetilde{Q}}=\left[\begin{array}{lll}
q_{2} & \ldots & q_{n}
\end{array}\right] .
$$

Observe

$$
\begin{aligned}
\widetilde{Q}^{*} A \widetilde{Q} & =\widetilde{Q}^{*}\left[\begin{array}{cc}
\lambda v & A \widetilde{\widetilde{Q}}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda \widetilde{Q}^{*} v & \widetilde{Q}^{*} A \widetilde{\widetilde{Q}}
\end{array}\right]=\left[\begin{array}{cc}
\lambda & w^{T} \\
0 & \widehat{A}
\end{array}\right]
\end{aligned}
$$

for some $w \in \mathbb{C}^{n}$ and $\widehat{A} \in \mathbb{C}^{(n-1) \times(n-1)}$.

As the inductive hypothesis \widehat{A} has a Schur factorization

$$
\widehat{A}=\widehat{Q} \widehat{T} \widehat{Q}^{*}
$$

where $\widehat{T} \in \mathbb{C}^{(n-1) \times(n-1)}$ is upper triangular, $\widehat{Q} \in \mathbb{C}^{(n-1) \times(n-1)}$ is unitary.

As the inductive hypothesis \widehat{A} has a Schur factorization

$$
\widehat{A}=\widehat{Q} \widehat{T} \widehat{Q}^{*}
$$

where $\widehat{T} \in \mathbb{C}^{(n-1) \times(n-1)}$ is upper triangular, $\widehat{Q} \in \mathbb{C}^{(n-1) \times(n-1)}$ is unitary.

It follows that

$$
\widetilde{Q}^{*} A \widetilde{Q}=\left[\begin{array}{cc}
\lambda & w^{T} \\
0 & \widehat{Q} \widehat{T} \widehat{Q}^{*}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & \widehat{Q}
\end{array}\right]\left[\begin{array}{cc}
\lambda & w^{T} \widehat{Q} \\
0 & \widehat{T}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \widehat{Q}^{*}
\end{array}\right]
$$

As the inductive hypothesis \widehat{A} has a Schur factorization

$$
\widehat{A}=\widehat{Q} \widehat{T} \widehat{Q}^{*}
$$

where $\widehat{T} \in \mathbb{C}^{(n-1) \times(n-1)}$ is upper triangular, $\widehat{Q} \in \mathbb{C}^{(n-1) \times(n-1)}$ is unitary.

It follows that

$$
\widetilde{Q}^{*} A \widetilde{Q}=\left[\begin{array}{cc}
\lambda & w^{T} \\
0 & \widehat{Q} \widehat{T} \widehat{Q}^{*}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & \widehat{Q}
\end{array}\right]\left[\begin{array}{cc}
\lambda & w^{T} \widehat{Q} \\
0 & \widehat{T}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \widehat{Q}^{*}
\end{array}\right]
$$

that is

$$
A=\underbrace{\widetilde{Q}\left[\begin{array}{cc}
1 & 0 \\
0 & \widehat{Q}
\end{array}\right]}_{Q} \underbrace{\left[\begin{array}{cc}
\lambda & w^{T} \widehat{Q} \\
0 & \widehat{T}
\end{array}\right]}_{T} \underbrace{\left[\begin{array}{cc}
1 & 0 \\
0 & \widehat{Q}^{*}
\end{array}\right] \widetilde{Q}^{*}}_{Q^{*}}
$$

as desired.

Hermitian Positive Semi-Definite (PSD) Matrices

Let $A \in \mathbb{C}^{n \times n}, A^{*}=A$ and

$$
v^{*} A v \geq 0 \quad \forall v \in \mathbb{C}^{n}
$$

Theorem 0.2. Let $A \in \mathbb{C}^{n \times n}$ be Hermitian. The following are equivalent:
(i) A is positive semi-definite.
(ii) All eigenvalues of A are nonnegative.

Example.

$$
A=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]
$$

with eigenvalues $\lambda_{1}=4, \lambda=2$.
A is positive semi-definite.

Proof of $\sim(\mathbf{i i}) \Longrightarrow \sim(\mathbf{i})$

Suppose A has a negative eigenvalue λ with a corresponding unit eigenvector v.

$$
v^{*} A v=v^{*} \lambda v=\lambda\|v\|^{2}=\lambda<0
$$

Hence, A is not positive semi-definite.

Proof of (ii) \Longrightarrow (i)

Let $\lambda_{1}, \ldots, \lambda_{n}$ be eigenvalues of A, all nonnegative.
v_{1}, \ldots, v_{n} be corresponding eigenvectors s.t.
$\left\{v_{1}, \ldots, v_{n}\right\}$ is orthonormal.

Proof of (ii) \Longrightarrow (i)

Let $\lambda_{1}, \ldots, \lambda_{n}$ be eigenvalues of A, all nonnegative.
v_{1}, \ldots, v_{n} be corresponding eigenvectors s.t.
$\left\{v_{1}, \ldots, v_{n}\right\}$ is orthonormal.

Every $v \in \mathbb{C}^{n}$ can be written of the form

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}
$$

for some $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$

Proof of (ii) \Longrightarrow (i)

Let $\lambda_{1}, \ldots, \lambda_{n}$ be eigenvalues of A, all nonnegative.
v_{1}, \ldots, v_{n} be corresponding eigenvectors s.t.
$\left\{v_{1}, \ldots, v_{n}\right\}$ is orthonormal.

Every $v \in \mathbb{C}^{n}$ can be written of the form

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}
$$

for some $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{C}$, and

$$
\begin{aligned}
v^{*} A v & =\left(\bar{\alpha}_{1} v_{1}^{*}+\cdots+\bar{\alpha}_{n} v_{n}^{*}\right)\left(\alpha_{1} \lambda_{1} v_{1}+\cdots+\alpha_{n} \lambda_{n} v_{n}\right) \\
& =\left|\alpha_{1}\right|^{2} \lambda_{1} v_{1}^{*} v_{1}+\cdots+\left|\alpha_{n}\right|^{2} \lambda_{n} v_{n}^{*} v_{n} \\
& =\left|\alpha_{1}\right|^{2} \lambda_{1}+\cdots+\left|\alpha_{n}\right|^{2} \lambda_{n} \geq 0
\end{aligned}
$$

Hence, A is positive semi-definite.

