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The Schur factorization for A ∈ Cn×n is of the form

A = QTQ∗

where

• Q ∈ Cn×n is unitary,

• T ∈ Cn×n is upper triangular.
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Theorem 0.1 (Existence). Every matrix A ∈ Cn×n has a Schur
factorization.
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The proof of existence is by induction on n.
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The proof of existence is by induction on n.

Base case n = 1 is trivial, i.e., A = 1 · A · 1∗.
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The proof of existence is by induction on n.

Base case n = 1 is trivial, i.e., A = 1 · A · 1∗.

Inductive case
Let λ be an eigenvalue and v ∈ Cn be a corresponding eigen-
vector. Form a unitary matrix

Q̃ =
[
v

˜̃
Q

]
, where ˜̃

Q =
[
q2 . . . qn

]
.
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The proof of existence is by induction on n.

Base case n = 1 is trivial, i.e., A = 1 · A · 1∗.

Inductive case
Let λ be an eigenvalue and v ∈ Cn be a corresponding eigen-
vector. Form a unitary matrix

Q̃ =
[
v

˜̃
Q

]
, where ˜̃

Q =
[
q2 . . . qn

]
.

Observe

Q̃∗AQ̃ = Q̃∗
[
λv A

˜̃
Q

]
=

[
λQ̃∗v Q̃∗A

˜̃
Q

]
=

[
λ wT

0 Â

]

for some w ∈ Cn and Â ∈ C(n−1)×(n−1).
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As the inductive hypothesis Â has a Schur factorization

Â = Q̂T̂ Q̂∗

where T̂ ∈ C(n−1)×(n−1) is upper triangular,
Q̂ ∈ C(n−1)×(n−1) is unitary.
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As the inductive hypothesis Â has a Schur factorization

Â = Q̂T̂ Q̂∗

where T̂ ∈ C(n−1)×(n−1) is upper triangular,
Q̂ ∈ C(n−1)×(n−1) is unitary.

It follows that

Q̃∗AQ̃ =

[
λ wT

0 Q̂T̂ Q̂∗

]
=

[
1 0

0 Q̂

][
λ wT Q̂

0 T̂

][
1 0

0 Q̂∗

]
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As the inductive hypothesis Â has a Schur factorization

Â = Q̂T̂ Q̂∗

where T̂ ∈ C(n−1)×(n−1) is upper triangular,
Q̂ ∈ C(n−1)×(n−1) is unitary.

It follows that

Q̃∗AQ̃ =

[
λ wT

0 Q̂T̂ Q̂∗

]
=

[
1 0

0 Q̂

][
λ wT Q̂

0 T̂

][
1 0

0 Q̂∗

]
that is

A = Q̃

[
1 0

0 Q̂

]
︸ ︷︷ ︸

Q

[
λ wT Q̂

0 T̂

]
︸ ︷︷ ︸

T

[
1 0

0 Q̂∗

]
Q̃∗︸ ︷︷ ︸

Q∗

as desired.
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Hermitian Positive Semi-Definite (PSD) Matrices

Let A ∈ Cn×n, A∗ = A and

v∗Av ≥ 0 ∀v ∈ Cn.

Theorem 0.2. Let A ∈ Cn×n be Hermitian. The following are
equivalent:

(i) A is positive semi-definite.

(ii) All eigenvalues of A are nonnegative.

Example.

A =

[
3 1

1 3

]
with eigenvalues λ1 = 4, λ = 2.

A is positive semi-definite.
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Proof of ∼(ii) =⇒∼(i)

Suppose A has a negative eigenvalue λ with a corresponding
unit eigenvector v.

v∗Av = v∗λv = λ‖v‖2 = λ < 0

Hence, A is not positive semi-definite.
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Proof of (ii) =⇒ (i)

Let λ1, . . . , λn be eigenvalues of A, all nonnegative.
v1, . . . , vn be corresponding eigenvectors s.t.
{v1, . . . , vn} is orthonormal.
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Proof of (ii) =⇒ (i)

Let λ1, . . . , λn be eigenvalues of A, all nonnegative.
v1, . . . , vn be corresponding eigenvectors s.t.
{v1, . . . , vn} is orthonormal.

Every v ∈ Cn can be written of the form

v = α1v1 + α2v2 + · · ·+ αnvn

for some α1, . . . , αn ∈ C
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Proof of (ii) =⇒ (i)

Let λ1, . . . , λn be eigenvalues of A, all nonnegative.
v1, . . . , vn be corresponding eigenvectors s.t.
{v1, . . . , vn} is orthonormal.

Every v ∈ Cn can be written of the form

v = α1v1 + α2v2 + · · ·+ αnvn

for some α1, . . . , αn ∈ C, and

v∗Av = (α1v
∗
1 + · · ·+ αnv

∗
n)(α1λ1v1 + · · ·+ αnλnvn)

= |α1|2λ1v∗1v1 + · · ·+ |αn|2λnv∗nvn
= |α1|2λ1 + · · ·+ |αn|2λn ≥ 0.

Hence, A is positive semi-definite.
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