Reminders from Lecture 8 \& Background

Direct Sum

For two subspaces of $\mathcal{S}_{1}, \mathcal{S}_{2}$ of \mathbb{C}^{n} such that $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{0\}$, their direct sum is defined by

$$
\mathcal{S}_{1} \oplus \mathcal{S}_{2}:=\left\{v_{1}+v_{2} \mid v_{1} \in \mathcal{S}_{1}, v_{2} \in \mathcal{S}_{2}\right\}
$$

Direct Sum

For two subspaces of $\mathcal{S}_{1}, \mathcal{S}_{2}$ of \mathbb{C}^{n} such that $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{0\}$, their direct sum is defined by

$$
\begin{gathered}
\mathcal{S}_{1} \oplus \mathcal{S}_{2}:=\left\{v_{1}+v_{2} \mid v_{1} \in \mathcal{S}_{1}, v_{2} \in \mathcal{S}_{2}\right\} \\
-\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} \oplus \operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
\end{gathered}
$$

Direct Sum

For two subspaces of $\mathcal{S}_{1}, \mathcal{S}_{2}$ of \mathbb{C}^{n} such that $\mathcal{S}_{1} \cap \mathcal{S}_{2}=\{0\}$, their direct sum is defined by

$$
\begin{gathered}
\mathcal{S}_{1} \oplus \mathcal{S}_{2}:=\left\{v_{1}+v_{2} \mid v_{1} \in \mathcal{S}_{1}, v_{2} \in \mathcal{S}_{2}\right\} \\
\bullet \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} \oplus \operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\} \\
\bullet \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} \oplus \operatorname{span}\left\{\left[\begin{array}{r}
-3 \\
0 \\
0
\end{array}\right]\right\} \text { is not defined. }
\end{gathered}
$$

Projections

Let $\mathcal{S}_{1}, \mathcal{S}_{2}$ be subspaces s.t. $\mathcal{S}_{1} \oplus \mathcal{S}_{2}=\mathbb{C}^{n}$.
Every vector $v \in \mathbb{C}^{n}$ has a unique decomposition

$$
v=v_{\mathcal{S}_{1}}+v_{\mathcal{S}_{2}}, \quad \exists v_{\mathcal{S}_{1}} \in \mathcal{S}_{1}, \quad \exists v_{\mathcal{S}_{2}} \in \mathcal{S}_{2}
$$

$v_{\mathcal{S}_{1}}$ is called the projection of v onto \mathcal{S}_{1} along \mathcal{S}_{2}.

Projections

Let $\mathcal{S}_{1}, \mathcal{S}_{2}$ be subspaces s.t. $\mathcal{S}_{1} \oplus \mathcal{S}_{2}=\mathbb{C}^{n}$.
Every vector $v \in \mathbb{C}^{n}$ has a unique decomposition

$$
v=v_{\mathcal{S}_{1}}+v_{\mathcal{S}_{2}}, \quad \exists v_{\mathcal{S}_{1}} \in \mathcal{S}_{1}, \quad \exists v_{\mathcal{S}_{2}} \in \mathcal{S}_{2}
$$

$v_{\mathcal{S}_{1}}$ is called the projection of v onto \mathcal{S}_{1} along \mathcal{S}_{2}.

Example. $\mathcal{S}_{1}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}, \mathcal{S}_{2}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}, v=\left[\begin{array}{r}3 \\ -2\end{array}\right]$

Projections

Let $\mathcal{S}_{1}, \mathcal{S}_{2}$ be subspaces s.t. $\mathcal{S}_{1} \oplus \mathcal{S}_{2}=\mathbb{C}^{n}$.
Every vector $v \in \mathbb{C}^{n}$ has a unique decomposition

$$
v=v_{\mathcal{S}_{1}}+v_{\mathcal{S}_{2}}, \quad \exists v_{\mathcal{S}_{1}} \in \mathcal{S}_{1}, \quad \exists v_{\mathcal{S}_{2}} \in \mathcal{S}_{2}
$$

$v_{\mathcal{S}_{1}}$ is called the projection of v onto \mathcal{S}_{1} along \mathcal{S}_{2}.

Example. $\mathcal{S}_{1}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}, \mathcal{S}_{2}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}, v=\left[\begin{array}{r}3 \\ -2\end{array}\right]$

$$
\left[\begin{array}{r}
3 \\
-2
\end{array}\right]=(5)\left[\begin{array}{l}
1 \\
0
\end{array}\right]+(-2)\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$v_{\mathcal{S}_{1}}=\left[\begin{array}{l}5 \\ 0\end{array}\right]$ is the projection of v onto \mathcal{S}_{1} along \mathcal{S}_{2}.

Orthogonal Complement

Given \mathcal{S} a subspace of \mathbb{C}^{n}, orthogonal complement of \mathcal{S}

$$
\mathcal{S}^{\perp}:=\left\{w \in \mathbb{C}^{n} \mid w^{*} v=0 \text { for all } v \in \mathcal{S}\right\}
$$

Orthogonal Complement

Given \mathcal{S} a subspace of \mathbb{C}^{n}, orthogonal complement of \mathcal{S}

$$
\mathcal{S}^{\perp}:=\left\{w \in \mathbb{C}^{n} \mid w^{*} v=0 \text { for all } v \in \mathcal{S}\right\}
$$

Example. $\mathcal{S}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$

Orthogonal Complement

Given \mathcal{S} a subspace of \mathbb{C}^{n}, orthogonal complement of \mathcal{S}

$$
\mathcal{S}^{\perp}:=\left\{w \in \mathbb{C}^{n} \mid w^{*} v=0 \text { for all } v \in \mathcal{S}\right\}
$$

Example. $\mathcal{S}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$

$$
\mathcal{S}^{\perp}=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \right\rvert\, x+y+z=0\right\}
$$

Orthogonal Complement

Given \mathcal{S} a subspace of \mathbb{C}^{n}, orthogonal complement of \mathcal{S}

$$
\mathcal{S}^{\perp}:=\left\{w \in \mathbb{C}^{n} \mid w^{*} v=0 \text { for all } v \in \mathcal{S}\right\}
$$

Example. $\mathcal{S}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$

$$
\begin{aligned}
\mathcal{S}^{\perp} & =\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \right\rvert\, x+y+z=0\right\} \\
& =\left\{\left.\left[\begin{array}{c}
x \\
y \\
-x-y
\end{array}\right] \right\rvert\, x, y \in \mathbb{C}\right\}=\operatorname{span}\left\{\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right],\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]\right\}
\end{aligned}
$$

Orthogonal Complement

$$
U=\left[\begin{array}{ccr}
1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{2} \\
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2} \\
1 / \sqrt{3} & -2 / \sqrt{6} & 0
\end{array}\right] \text { is unitary. }
$$

Orthogonal Complement

$$
\begin{gathered}
U=\left[\begin{array}{ccr}
1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{2} \\
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2} \\
1 / \sqrt{3} & -2 / \sqrt{6} & 0
\end{array}\right] \text { is unitary. } \\
\operatorname{Col}\left(\left[\begin{array}{cc}
1 / \sqrt{3} & 1 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{6} \\
1 / \sqrt{3} & -2 / \sqrt{6}
\end{array}\right]\right)^{\perp}=\operatorname{span}\left\{\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]\right\}
\end{gathered}
$$

Orthogonal Complement

$$
\begin{gathered}
U=\left[\begin{array}{ccr}
1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{2} \\
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2} \\
1 / \sqrt{3} & -2 / \sqrt{6} & 0
\end{array}\right] \text { is unitary. } \\
\operatorname{Col}\left(\left[\begin{array}{cc}
1 / \sqrt{3} & 1 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{6} \\
1 / \sqrt{3} & -2 / \sqrt{6}
\end{array}\right]\right)^{\perp}=\operatorname{span}\left\{\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]\right\}
\end{gathered}
$$

- $U=\left[\begin{array}{ll}\widehat{U} & \widetilde{U}\end{array}\right] \in \mathbb{C}^{n \times n}$ is unitary, $\widehat{U} \in \mathbb{C}^{n \times p}, \widetilde{U} \in \mathbb{C}^{n \times(n-p)}$

Orthogonal Complement

$$
\begin{gathered}
U=\left[\begin{array}{rrr}
1 / \sqrt{3} & 1 / \sqrt{6} & -1 / \sqrt{2} \\
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2} \\
1 / \sqrt{3} & -2 / \sqrt{6} & 0
\end{array}\right] \text { is unitary. } \\
\operatorname{Col}\left(\left[\begin{array}{ll}
1 / \sqrt{3} & 1 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{6} \\
1 / \sqrt{3} & -2 / \sqrt{6}
\end{array}\right]\right)^{\perp}=\operatorname{span}\left\{\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2} \\
0
\end{array}\right]\right\} \\
-U=\left[\begin{array}{ll}
\widehat{U} & \widetilde{U}
\end{array}\right] \in \mathbb{C}^{n \times n} \text { is unitary, } \widehat{U} \in \mathbb{C}^{n \times p}, \widetilde{U} \in \mathbb{C}^{n \times(n-p)} \\
\operatorname{Col}(\widehat{U})^{\perp}=\operatorname{Col}(\widetilde{U}) .
\end{gathered}
$$

