MATH 504: Numerical Methods I

Instructor: Emre Mengi

Fall Semester 2018 Final Examination

	#1	20	
	#2	20	
NAME	#3	25	
	 #4	20	
Student ID	 #5	15	
	Σ	100	
SIGNATURE	 		

- Put your name, student ID and signature in the spaces provided above.
- Duration for this exam is 165 minutes.

Problem 1. (20 points) Let $A \in \mathbb{C}^{n \times n}$ be a matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_{n-1}, \lambda_n$ such that

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_{n-1}| > |\lambda_n|,$$

and *n* linearly independent eigenvectors $v_1, v_2, \ldots, v_{n-1}, v_n$, where v_j is an eigenvector corresponding to λ_j for $j = 1, \ldots, n$.

Suppose also that an LU factorization of $A \in \mathbb{C}^{n \times n}$ obtained by employing partial pivoting strategy is also given, that is a permutation matrix $P \in \mathbb{R}^{n \times n}$, a unit lower triangular matrix $L \in \mathbb{C}^{n \times n}$, and an upper triangular matrix $U \in \mathbb{C}^{n \times n}$ satisfying

$$PA = LU$$

are given.

Given A as above and $q^{(0)} \in \mathbb{C}^n$ such that $q^{(0)} \notin \operatorname{span}\{v_1, \ldots, v_{n-1}\}$, write down a pseudocode that generates a sequence $\{q^{(k)}\}$ in \mathbb{C}^n satisfying

$$\operatorname{span}\{q^{(k)}\} \to \operatorname{span}\{v_n\}$$
 as $k \to \infty$.

Your pseudocode must perform as few flops as possible.

Problem 2. Let

$$A = \begin{bmatrix} -2 & -4 & 3\\ 4 & -1 & -6\\ 1 & 2 & 3 \end{bmatrix}.$$

(a) (10 points) Compute a unit lower triangular matrix $L \in \mathbb{R}^{3\times 3}$ (that is L must be a lower triangular matrix with 1s on the diagonal) and an upper triangular matrix $U \in \mathbb{R}^{3\times 3}$ such that

$$A = LU.$$

(b) (10 points) Compute a unit upper triangular matrix $U \in \mathbb{R}^{3\times 3}$ (that is U must be an upper triangular matrix with 1s on the diagonal) and a lower triangular matrix $L \in \mathbb{R}^{3\times 3}$ such that

$$A = UL.$$

Math 504, Final

Problem 3. (25 points) For every matrix $A \in \mathbb{C}^{n \times n}$, there exist unitary matrices $U, V \in \mathbb{C}^{n \times n}$ such that

$$UAV = B \tag{1}$$

is bidiagonal (that is *B* is such that $b_{ij} = 0$ if $j \neq i$ and $j \neq i + 1$).

Write down a pseudocode that, for a given $A \in \mathbb{C}^{n \times n}$, computes a bidiagonal matrix $B \in \mathbb{C}^{n \times n}$ such that (1) holds for some unitary matrices $U, V \in \mathbb{C}^{n \times n}$. Your pseudocode does not have to return U and V, it suffices if it only returns B.

Problem 4. The Hadamard product \odot of two matrices $A, B \in \mathbb{C}^{n \times n}$ is defined by

$\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \end{bmatrix}$	a_{12} a_{22}	a_{1n} a_{2n}	\odot	$b_{11} \\ b_{21} \\ \vdots$	$b_{12} \\ b_{22}$		b_{1n} b_{2n}	=	$\begin{bmatrix} a_{11}b_{11} \\ a_{21}b_{21} \\ \vdots \end{bmatrix}$	$a_{12}b_{12} \\ a_{22}b_{22}$	 $\begin{array}{c}a_{1n}b_{1n}\\a_{2n}b_{2n}\end{array}$	
$\begin{bmatrix} a_{n1} \end{bmatrix}$	a_{n2}	a_{nn}		b_{n1}	b_{n2}		b_{nn}		$a_{n1}b_{n1}$	$a_{n2}b_{n2}$	$a_{nn}b_{nn}$	
	A				I	3						

For a given $D \in \mathbb{C}^{n \times n}$, define

$$f: \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}, \quad f(X) = D \odot X.$$
 (2)

(a) (10 points) Assuming D and X in (2) have exact representations in IEEE floating point arithmetic, show that $\hat{f}(X)$, that is the computed f(X) in IEEE floating point arithmetic, satisfies

$$\widehat{f}(X) = f(X + \delta X), \quad \exists \, \delta X \in \mathbb{C}^{n \times n} \text{ s.t. } \|\delta X\|_F / \|X\|_F = O(\epsilon_{\text{mach}}).$$

(b) (10 points) Let κ denote the absolute condition number of f(X) defined as in (2) for a given $D \in \mathbb{C}^{n \times n}$ when the Frobenius norm $\|\cdot\|_F$ is used on the input and output spaces of f(X). Show that $\kappa = \|D\|_F$.

(Note: You can make use of the inequality

$$\|A \odot B\|_F \le \|A\|_F \|B\|_F$$

that is satisfied for every $A, B \in \mathbb{C}^{n \times n}$.)

Math 504, Final

Problem 5. (15 points) A pseudocode is provided below for the basic QR algorithm without shifts to compute the eigenvalues of a matrix $A \in \mathbb{C}^{n \times n}$.

Algorithm 1 The QR Algorithm without Shifts

 $A_0 \leftarrow A$ **for** $k = 0, 1, \dots$ **do** Compute a QR factorization $A_k = Q_{k+1}R_{k+1}$ $A_{k+1} \leftarrow R_{k+1}Q_{k+1}$ **end for**

Prove that the iterates Q_k , R_k by this algorithm satisfy

$$A^k = (Q_1 Q_2 \dots Q_k) (R_k \dots R_2 R_1)$$

for all integer $k \ge 1$.