Math 504: Numerical Methods I

Instructor: Emre Mengi

Fall Semester 2018
Final Examination

	\#1	20	
	\#2	20	
	\#3	25	
Name	\#4	20	
Student ID	\#5	15	
	Σ	100	

- Put your name, student ID and signature in the spaces provided above.
- Duration for this exam is 165 minutes.

Problem 1. (20 points) Let $A \in \mathbb{C}^{n \times n}$ be a matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}, \lambda_{n}$ such that

$$
\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|
$$

and n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n-1}, v_{n}$, where v_{j} is an eigenvector corresponding to λ_{j} for $j=1, \ldots, n$.

Suppose also that an LU factorization of $A \in \mathbb{C}^{n \times n}$ obtained by employing partial pivoting strategy is also given, that is a permutation matrix $P \in$ $\mathbb{R}^{n \times n}$, a unit lower triangular matrix $L \in \mathbb{C}^{n \times n}$, and an upper triangular matrix $U \in \mathbb{C}^{n \times n}$ satisfying

$$
P A=L U
$$

are given.
Given A as above and $q^{(0)} \in \mathbb{C}^{n}$ such that $q^{(0)} \notin \operatorname{span}\left\{v_{1}, \ldots, v_{n-1}\right\}$, write down a pseudocode that generates a sequence $\left\{q^{(k)}\right\}$ in \mathbb{C}^{n} satisfying

$$
\operatorname{span}\left\{q^{(k)}\right\} \rightarrow \operatorname{span}\left\{v_{n}\right\} \quad \text { as } \quad k \rightarrow \infty .
$$

Your pseudocode must perform as few flops as possible.

Problem 2. Let

$$
A=\left[\begin{array}{rrr}
-2 & -4 & 3 \\
4 & -1 & -6 \\
1 & 2 & 3
\end{array}\right]
$$

(a) (10 points) Compute a unit lower triangular matrix $L \in \mathbb{R}^{3 \times 3}$ (that is L must be a lower triangular matrix with 1 s on the diagonal) and an upper triangular matrix $U \in \mathbb{R}^{3 \times 3}$ such that

$$
A=L U .
$$

(b) (10 points) Compute a unit upper triangular matrix $U \in \mathbb{R}^{3 \times 3}$ (that is U must be an upper triangular matrix with 1s on the diagonal) and a lower triangular matrix $L \in \mathbb{R}^{3 \times 3}$ such that

$$
A=U L
$$

Problem 3. (25 points) For every matrix $A \in \mathbb{C}^{n \times n}$, there exist unitary matrices $U, V \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
U A V=B \tag{1}
\end{equation*}
$$

is bidiagonal (that is B is such that $b_{i j}=0$ if $j \neq i$ and $j \neq i+1$).
Write down a pseudocode that, for a given $A \in \mathbb{C}^{n \times n}$, computes a bidiagonal matrix $B \in \mathbb{C}^{n \times n}$ such that (1) holds for some unitary matrices $U, V \in \mathbb{C}^{n \times n}$. Your pseudocode does not have to return U and V, it suffices if it only returns B.

Problem 4. The Hadamard product \odot of two matrices $A, B \in \mathbb{C}^{n \times n}$ is defined by

$$
\underbrace{\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
\vdots & & & \\
a_{n 1} & a_{n 2} & & a_{n n}
\end{array}\right]}_{A} \odot \underbrace{\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & & b_{2 n} \\
\vdots & & & \\
b_{n 1} & b_{n 2} & & b_{n n}
\end{array}\right]}_{B}=\left[\begin{array}{cccc}
a_{11} b_{11} & a_{12} b_{12} & \ldots & a_{1 n} b_{1 n} \\
a_{21} b_{21} & a_{22} b_{22} & & a_{2 n} b_{2 n} \\
\vdots & & & \\
a_{n 1} b_{n 1} & a_{n 2} b_{n 2} & & a_{n n} b_{n n}
\end{array}\right] .
$$

For a given $D \in \mathbb{C}^{n \times n}$, define

$$
\begin{equation*}
f: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}, \quad f(X)=D \odot X \tag{2}
\end{equation*}
$$

(a) (10 points) Assuming D and X in (2) have exact representations in IEEE floating point arithmetic, show that $\widehat{f}(X)$, that is the computed $f(X)$ in IEEE floating point arithmetic, satisfies
$\widehat{f}(X)=f(X+\delta X), \quad \exists \delta X \in \mathbb{C}^{n \times n}$ s.t. $\|\delta X\|_{F} /\|X\|_{F}=O\left(\epsilon_{\text {mach }}\right)$.
(b) (10 points) Let κ denote the absolute condition number of $f(X)$ defined as in (2) for a given $D \in \mathbb{C}^{n \times n}$ when the Frobenius norm $\|\cdot\|_{F}$ is used on the input and output spaces of $f(X)$. Show that $\kappa=\|D\|_{F}$.
(Note: You can make use of the inequality

$$
\|A \odot B\|_{F} \leq\|A\|_{F}\|B\|_{F}
$$

that is satisfied for every $A, B \in \mathbb{C}^{n \times n}$.)

Problem 5. (15 points) A pseudocode is provided below for the basic QR algorithm without shifts to compute the eigenvalues of a matrix $A \in \mathbb{C}^{n \times n}$.

```
Algorithm 1 The QR Algorithm without Shifts
    \(A_{0} \leftarrow A\)
    for \(k=0,1, \ldots\) do
        Compute a QR factorization \(A_{k}=Q_{k+1} R_{k+1}\)
        \(A_{k+1} \leftarrow R_{k+1} Q_{k+1}\)
    end for
```

Prove that the iterates Q_{k}, R_{k} by this algorithm satisfy

$$
A^{k}=\left(Q_{1} Q_{2} \ldots Q_{k}\right)\left(R_{k} \ldots R_{2} R_{1}\right)
$$

for all integer $k \geq 1$.

