Math 504: Numerical Methods - I

Final - Fall 2010
Duration : 180 minutes

Name

Student ID

Signature

$\# 1$	20	
$\# 2$	15	
$\# 3$	20	
$\# 4$	15	
$\# 5$	15	
$\# 6$	15	
Σ	100	

- Put your name and student ID in the space provided above.
- No calculators or any other electronic devices are allowed.
- This is a closed-book and closed-notes exam.
- Show all of your work; full credit will not be given for unsupported answers.

Question 1. Consider the matrices

$$
A_{1}=\left[\begin{array}{ll}
1 & 7 \\
3 & 5
\end{array}\right] \quad \text { and } \quad A_{2}=\left[\begin{array}{rrr}
2 & 4 & -5 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]
$$

(a) Find the eigenvalues of A_{1} and the eigenspace associated with each of its eigenvalues.
(b) Find the eigenvalues of A_{2} together with their algebraic and geometric multiplicities.
(c) Find a Schur factorization for A_{1}.
(d) Let v_{0} and v_{1} be two linearly independent eigenvectors of A_{1}. Suppose also that $\left\{q_{k}\right\}$ denotes the sequence of vectors generated by the inverse iteration with shift $\sigma=2$ and starting with an initial vector $q_{0}=\alpha_{0} v_{0}+$ $\alpha_{1} v_{1} \in \mathbb{C}^{2}$ where α_{0}, α_{1} are nonzero scalars.

Determine the subspace that $\operatorname{span}\left\{q_{k}\right\}$ is approaching as $k \rightarrow \infty$.

Question 2. Suppose that you are given a full singular value decomposition for $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ of the form

$$
\begin{equation*}
A=U \Sigma V^{*} \tag{1}
\end{equation*}
$$

where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma \in \mathbb{C}^{m \times n}$ is diagonal with positive entries along the diagonal.
(a) First assume that $m=n$ so that A is a square matrix. Given the SVD in (1) of A. Describe an algorithm to solve the linear system $A x=b$ at a cost of $O\left(n^{2}\right)$ where $b \in \mathbb{C}^{n}$.
(b) Now assume that $m>n$. Given the SVD in (1) of A. Describe an algorithm to solve the least squares problem
find $x \in \mathbb{C}^{n}$ so that $\|A x-b\|_{2}$ is as small as possible
at a cost of $O\left(m^{2}\right)$ where $b \in \mathbb{C}^{m}$.

Question 3. This question concerns the sensitivity of numerical problems and stability of numerical algorithms.
(a) Which of the following operations can be performed in a backward stable manner in IEEE floating point arithmetic? Explain your reasoning.
(i) The summation $f(x)=3+x$ as a function of $x \in \mathbb{R}$.
(ii) The scalar multiplication $g(x)=3 \cdot x$ as a function of $x \in \mathbb{R}$.
(b) Given a fixed $b \in \mathbb{R}^{2}$, and the matrices

$$
A_{1}=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] \quad \text { and } A_{2}=\left[\begin{array}{cc}
1 & 1 \\
-10^{-3} & 10^{-3}
\end{array}\right]
$$

Which of the linear systems $A_{1} x=b$ and $A_{2} x=b$ is more sensitive to perturbations in A_{1} and A_{2}, respectively? Explain.
(c) Given the vector

$$
b=\left[\begin{array}{c}
-1 \\
10^{-3} \\
1
\end{array}\right]
$$

and the matrices

$$
\tilde{A}_{1}=\left[\begin{array}{rr}
3 & 1 \\
1 & -2 \\
3 & 1
\end{array}\right] \quad \text { and } \quad \tilde{A}_{2}=\left[\begin{array}{rr}
1 & 1 \\
1 & -1 \\
-1 & -1
\end{array}\right]
$$

Let

- x_{1} be the solution of the least squares problem

$$
\begin{equation*}
\operatorname{minimize}_{x}\left\|A_{1} x-b\right\|_{2} \tag{2}
\end{equation*}
$$

$-x_{2}$ be the solution of the least squares problem

$$
\begin{equation*}
\operatorname{minimize}_{x}\left\|A_{2} x-b\right\|_{2} \tag{3}
\end{equation*}
$$

Is the solution x_{1} of problem (2) w.r.t. perturbations in A_{1} more sensitive or the solution x_{2} of problem (3) w.r.t. perturbations in A_{2} ? Explain.

Question 4. This question concerns the LU factorization of tridiagonal matrices without pivoting.
(a) Find an LU factorization for the matrix

$$
A=\left[\begin{array}{rrr}
1 & -1 & 0 \\
2 & 1 & -1 \\
0 & 2 & 1
\end{array}\right]
$$

(b) Suppose $A \in \mathbb{C}^{n \times n}$ is tridiagonal with $a_{i j}=0$ whenever $|i-j|>1$. Suppose also that A is reducible into a triangular matrix by only applying row-replacement operations. Show that A has an LU factorization of the form

$$
A=\underbrace{\left[\begin{array}{ccccc}
1 & 0 & \ldots & & 0 \tag{4}\\
\ell_{21} & 1 & & & 0 \\
0 & \ell_{32} & 1 & & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \ell_{n(n-1)} & 1
\end{array}\right]}_{L} \underbrace{\left[\begin{array}{ccccc}
u_{11} & u_{12} & 0 & \ldots & 0 \\
0 & u_{22} & u_{23} & & 0 \\
0 & & u_{33} & \ddots & \vdots \\
\vdots & & & \ddots & u_{(n-1) n} \\
0 & \ldots & & 0 & u_{n n}
\end{array}\right]}_{U}
$$

that is A can be written of the form $A=L U$ where

- L is lower triangular with the entries along the diagonal equal to one, the entries along the subdiagonal possibly non-zero and all other entries equal to zero,
- U is upper triangular with the entries on the diagonal and the superdiagonal non-zero, and all other entries equal to zero.
(c) Write a pseudocode that requires $O(n)$ flops for the calculation of the LU factorization of form (4) for a tridiagonal matrix A.

Question 5. Given an upper triangular non-singular matrix $R \in \mathbb{C}^{n \times n}$ and $b \in \mathbb{C}^{n}$. Suppose that the linear system

$$
\begin{equation*}
R^{4} x=b \tag{5}
\end{equation*}
$$

is solved by performing back-substitution four times. In particular let $x_{0}=b$. Then the system $R x_{i}=x_{i-1}$ is solved for $i=1, \ldots, 4$ by back substitution. The solution to (5) is given by $x=x_{4}$. Below in part (a) you can refer to the following result.

Theorem:

Given a non-singular upper triangular matrix $R \in \mathbb{C}^{n \times n}$ and $c \in \mathbb{C}^{n}$. Suppose that the linear system $R y=c$ is solved by back substitution in IEEE floating point arithmetic. Then the computed solution \hat{y} satisfies

$$
(R+\widehat{\delta R}) \hat{y}=c
$$

for some $\widehat{\delta R}$ such that

$$
\frac{\|\widehat{\delta R}\|_{1}}{\|R\|_{1}} \leq n \epsilon_{\text {mach }}+O\left(\epsilon_{\text {mach }}^{2}\right)
$$

(a) Show that the computed solution \hat{x} for the system (5) satisfies

$$
(R+\delta R)^{4} \hat{x}=b
$$

for some δR. Find a tight upper bound for the relative backward error

$$
\frac{\|\delta R\|_{1}}{\|R\|_{1}}
$$

(b) Find a tight upper bound for the relative forward error

$$
\frac{\|\hat{x}-x\|_{1}}{\|x\|_{1}}
$$

where \hat{x} is the computed solution as defined in part (a).

Question 6. The QR algorithm is one of the standard approaches to compute the eigenvalues of a matrix $A \in \mathbb{C}^{n \times n}$. In this question you are expected to shed a light into the relation between the QR algorithm and simultaneous iteration. Pseudocodes are provided below for the QR algorithm as well as for the simultaneous iteration.

```
Algorithm 1 The QR Algorithm
    \(A_{0} \leftarrow A\)
    for \(k=0,1, \ldots\) do
        Compute a QR factorization \(A_{k}=Q_{k+1} R_{k+1}\)
        \(A_{k+1} \leftarrow R_{k+1} Q_{k+1}\)
    end for
```

```
Algorithm 2 Simultaneous Iteration
    for \(k=1, \ldots\) do
        Compute a QR factorization \(A^{k}=\hat{Q}_{k} \hat{R}_{k}\)
        \(\hat{A}_{k} \leftarrow \hat{Q}_{k}^{*} A \hat{Q}_{k}\)
    end for
```

Show that a QR factorization for A^{k} is given by

$$
A^{k}=\underbrace{Q_{1} Q_{2} \ldots Q_{k}}_{\hat{Q}_{k}} \underbrace{R_{k} \ldots R_{2} R_{1}}_{\hat{R}_{k}} .
$$

(Hint: First try to express A_{k} in terms of A and Q_{j} for $j=1, \ldots, k$.)

