MATH 504: Numerical Methods - I

		#1	20	
	-	#2	20	
	-	#3	20	
NAME		#4	20	
	 -	#5	20	
Student ID	 _	#6	20	
		#7	20	
SIGNATURE	 -	Σ	120	

Final - Fall 2012 Duration : 180 minutes

- Put your name and student ID in the space provided above.
- Pick any six out of the seven questions; circle the questions that you selected.
- The exam is out of 120 points; there is no bonus.
- No calculators or any other electronic devices are allowed.
- This is a closed-book exam, but you can use notes.
- Show all of your work; full credit will not be given for unsupported answers.

Question 1. Let $A \in \mathbb{C}^{n \times n}$ and $z \in \mathbb{C}^n$. Show that

- (i) $\inf \{ \|\delta A\|_2 \mid \delta A \in \mathbb{C}^{n \times n} \text{ s.t. } z \text{ is an eigenvalue of } (A + \delta A) \} = \sigma_n (A zI),$ where $\sigma_n (A - zI)$ denotes the smallest singular value of A - zI.
- (ii) Furthermore, a minimal perturbation solving the minimization problem in (i) is given by $\delta A_* = -\sigma u_n v_n^*$ where $\sigma := \sigma_n (A zI)$ and u_n, v_n denotes a pair of unit left and right singular vectors associated with $\sigma_n (A zI)$.

Question 2. For a given matrix $A \in \mathbb{C}^{m \times n}$ with m > n, find a unitary matrix $Q \in \mathbb{C}^{m \times m}$ such that Qv is the reflection of v about $\operatorname{Col}(A)$ for each $v \in \mathbb{C}^m$.

Question 3. Write down a pseudocode to compute the QR factorization of a matrix $A \in \mathbb{C}^{m \times n}$ by using Givens' rotators. Perform also a flop count for your pseudocode.

Question 4. This question concerns a Hermitian matrix $A \in \mathbb{C}^{n \times n}$. Let λ be an eigenvalue, $v \in \mathbb{C}^n$ be an associated unit eigenvector of A, and $r(q) := q^*Aq$ denote the Rayleigh quotient associated with the unit vector $q \in \mathbb{C}^n$. Show that

$$|\lambda - r(q)| \le \kappa \|v - q\|_2^2$$

where $\kappa := \max_{k=2,...,n} |\lambda - \lambda_k|$ with $\lambda, \lambda_2, \ldots, \lambda_n$ representing the set of (not necessarily distinct) eigenvalues of A.

Question 5. Consider the shifted version of the QR algorithm, for which a pseudocode is given below.

Al	lgorit	hm	1	The	QR	Al	gorithm	with	Shifts
----	--------	----	---	-----	----	----	---------	------	--------

 $\begin{array}{l} A_0 \leftarrow A \\ \textbf{for } k = 0, 1, \dots \textbf{ do} \\ \text{Choose a shift } \mu_k \\ \text{Compute a QR factorization } A_k - \mu_k I = Q_{k+1}R_{k+1} \\ A_{k+1} \leftarrow R_{k+1}Q_{k+1} + \mu_k I \\ \textbf{end for} \end{array}$

Show that the computed orthogonal factors Q_j and upper triangular factors R_j satisfy

$$(A - \mu_k I) \dots (A - \mu_0 I) = Q_1 \dots Q_{k+1} R_{k+1} \dots R_1.$$

(Note: This means that the shifted QR algorithm mimics a simultaneous Rayleigh iteration.)

Question 6. For given $A \in \mathbb{C}^{n \times n}$ and $q_0 \in \mathbb{C}^n$, suppose that a sequence of vectors q_1, \ldots, q_k related by $Aq_{j-1} = q_j, \ j = 1, \ldots, k$ is generated by applying the matrix vector product repeatedly in a computer satisfying IEEE floating point standards. Let $\tilde{q}_1, \ldots, \tilde{q}_k$ denote the computed vectors. Perform a backward error analysis to deduce a tight upper bound for the forward error

$$\frac{\|\tilde{q}_k - q_k\|_1}{\|q_k\|_1}.$$

Question 7. Consider the tridiagonal symmetric matrix $A \in \mathbb{R}^{5\times 5}$ with $a_{11} = 3$, $a_{jj} = 10/3$ for $j = 2, \ldots, 5$, $a_{j+1,j} = a_{j,j+1} = 1$ for $j = 1, \ldots, 4$ and all other entries equal to zero.

(a) Show that A is positive definite.

(b) Find a Cholesky factorization of A.