Math 504: Numerical Methods - I

Final - Fall 2012
Duration : 180 minutes

Name

$\# 1$	20	
$\# 2$	20	
$\# 3$	20	
$\# 4$	20	
$\# 5$	20	
$\# 6$	20	
$\# 7$	20	
Σ	120	

- Put your name and student ID in the space provided above.
- Pick any six out of the seven questions; circle the questions that you selected.
- The exam is out of 120 points; there is no bonus.
- No calculators or any other electronic devices are allowed.
- This is a closed-book exam, but you can use notes.
- Show all of your work; full credit will not be given for unsupported answers.

Question 1. Let $A \in \mathbb{C}^{n \times n}$ and $z \in \mathbb{C}^{n}$. Show that
(i) $\inf \left\{\|\delta A\|_{2} \mid \delta A \in \mathbb{C}^{n \times n}\right.$ s.t. z is an eigenvalue of $\left.(A+\delta A)\right\}=\sigma_{n}(A-z I)$, where $\sigma_{n}(A-z I)$ denotes the smallest singular value of $A-z I$.
(ii) Furthermore, a minimal perturbation solving the minimization problem in (i) is given by $\delta A_{*}=-\sigma u_{n} v_{n}^{*}$ where $\sigma:=\sigma_{n}(A-z I)$ and u_{n}, v_{n} denotes a pair of unit left and right singular vectors associated with $\sigma_{n}(A-z I)$.

Question 2. For a given matrix $A \in \mathbb{C}^{m \times n}$ with $m>n$, find a unitary matrix $Q \in \mathbb{C}^{m \times m}$ such that $Q v$ is the reflection of v about $\operatorname{Col}(A)$ for each $v \in \mathbb{C}^{m}$.

Question 3. Write down a pseudocode to compute the QR factorization of a matrix $A \in \mathbb{C}^{m \times n}$ by using Givens' rotators. Perform also a flop count for your pseudocode.

Question 4. This question concerns a Hermitian matrix $A \in \mathbb{C}^{n \times n}$. Let λ be an eigenvalue, $v \in \mathbb{C}^{n}$ be an associated unit eigenvector of A, and $r(q):=q^{*} A q$ denote the Rayleigh quotient associated with the unit vector $q \in \mathbb{C}^{n}$. Show that

$$
|\lambda-r(q)| \leq \kappa\|v-q\|_{2}^{2}
$$

where $\kappa:=\max _{k=2, \ldots, n}\left|\lambda-\lambda_{k}\right|$ with $\lambda, \lambda_{2}, \ldots, \lambda_{n}$ representing the set of (not necessarily distinct) eigenvalues of A.

Question 5. Consider the shifted version of the QR algorithm, for which a pseudocode is given below.

```
Algorithm 1 The QR Algorithm with Shifts
    \(A_{0} \leftarrow A\)
    for \(k=0,1, \ldots\) do
        Choose a shift \(\mu_{k}\)
        Compute a QR factorization \(A_{k}-\mu_{k} I=Q_{k+1} R_{k+1}\)
        \(A_{k+1} \leftarrow R_{k+1} Q_{k+1}+\mu_{k} I\)
    end for
```

Show that the computed orthogonal factors Q_{j} and upper triangular factors R_{j} satisfy

$$
\left(A-\mu_{k} I\right) \ldots\left(A-\mu_{0} I\right)=Q_{1} \ldots Q_{k+1} R_{k+1} \ldots R_{1} .
$$

(Note: This means that the shifted QR algorithm mimics a simultaneous Rayleigh iteration.)

Question 6. For given $A \in \mathbb{C}^{n \times n}$ and $q_{0} \in \mathbb{C}^{n}$, suppose that a sequence of vectors q_{1}, \ldots, q_{k} related by $A q_{j-1}=q_{j}, j=1, \ldots, k$ is generated by applying the matrix vector product repeatedly in a computer satisfying IEEE floating point standards. Let $\tilde{q}_{1}, \ldots, \tilde{q}_{k}$ denote the computed vectors. Perform a backward error analysis to deduce a tight upper bound for the forward error

$$
\frac{\left\|\tilde{q}_{k}-q_{k}\right\|_{1}}{\left\|q_{k}\right\|_{1}}
$$

Question 7. Consider the tridiagonal symmetric matrix $A \in \mathbb{R}^{5 \times 5}$ with $a_{11}=3$, $a_{j j}=10 / 3$ for $j=2, \ldots, 5, a_{j+1, j}=a_{j, j+1}=1$ for $j=1, \ldots, 4$ and all other entries equal to zero.
(a) Show that A is positive definite.
(b) Find a Cholesky factorization of A.

