
Math 504, Fall 2018 - Homework 3

December 4, 2018

1. Let us consider the matrices

A1 =

 −1 3 0

−4 −1 3

0 −4 −1

 and A2 =

 1 1 2

4 4 0

2 0 1

 . (0.1)

You are expected to perform all of the computations by hand.

(a) Compute the factorizations of the form PA = LU for each one of
A1 and A2 by applying the LU factorization algorithm with partial
pivoting.

(b) Use the factorization computed in part (a) to solve the linear system

A2x =
[
3 −4 −2

]T
.

2. This question concerns the matrices A1 and A2 as in (0.1). In both
parts, x denotes an entry that is possibly not zero.

(a) Find a permutation matrix P ∈ R3×3 and a lower triangular matrix
L ∈ R3×3 such that

L · P · A2 =

 4 4 0

0 x x

0 x x

 .

1

(b) Find a lower triangular matrix L ∈ R3×3 and an upper triangular
matrix U ∈ R3×3 such that

A1 = U ·

 −1 3 0

−4 x 0

0 0 −1

 · L.
3. For a dense matrix A ∈ Cn×n (“dense” means many of the entries, for
instance more than half of the entries, of A are nonzero) and a vector b ∈
Cn, the standard approach to solve the linear system Ax = b for x ∈ Cn is
as follows:

1. Compute an LU factorization PA = LU by partial pivoting;

2. Permute the right-hand side, that is form b̂ = Pb;

3. Letting y := Ux, solve the lower triangular system Ly = b̂ for y by
forward substitution;

4. Solve the upper triangular systemUx = y for x by back substitution.

Write a Matlab function to solve the system Ax = b following the steps 1-
4 described above. A Matlab routine (see myLU pivot.m under the matlab
link on the course webpage) for the computation of an LU factorization
employing the partial pivoting strategy is provided on the course web-
page. You can use this routine in your implementation. You should im-
plement the forward substitution and back substitution on your own.

4. One important application where very large linear systems arises is the
numerical solution of partial differential equations. Consider the Poisson
equation

uxx(x, y) + uyy(x, y) = −(cos(x+ y) + cos(x− y)), 0 < x < π, 0 < y <
π

2

with the boundary conditions

u(x, 0) = cos x, u
(
x,
π

2

)
= 0, 0 ≤ x ≤ π;

u(0, y) = cos y, u(π, y) = − cos y, 0 ≤ y ≤ π

2
.

2

The solution sought u(x, y) is a twice differentiable function. Further-
more, uxx and uyy denote the partial derivatives of uwith respect to x and
y twice, respectively.

One can numerically estimate the solution using finite differences. In
particular, it turns out that for a given h ≈ 0, we have

uxx(x, y) =
u(x+ h, y)− 2u(x, y) + u(x− h, y)

h2
+O(h2),

uyy(x, y) =
u(x, y + h)− 2u(x, y) + u(x, y − h)

h2
+O(h2).

Now let use denote by uij for i = 0, . . . , 2n and j = 0, . . . , n approx-
imate solutions satisfying uij ≈ u(ih, jh) where h = π/2

n
. Notice that

u0j, u(2n)j, ui0, uin are exact and can be obtained from the boundary con-
ditions. Employing the finite difference formulas and uij ≈ u(ih, jh), the
Poisson equation

uxx(ih, jh) + uyy(ih, jh) = −(cos(ih+ jh) + cos(ih− jh)),

at discrete points can be approximated by the linear equations

u(i+1)j − 2uij + u(i−1)j

h2
+
ui(j+1) − 2uij + ui(j−1)

h2
= −(cos(xi+yj)+cos(xi−yj))

where xi := ih and yj := jh.

Choose h = π/2
70

and set up a linear system with the unknowns {uij} for i =
1, . . . , 139 and j = 1, . . . , 69. Estimate the solution of the Poisson equation
by solving the resulting linear system by your linear system solver from
question 3.

5. The kth principal submatrix of A ∈ Cn×n is the upper left-most k × k
portion of A. Show that A has an LU factorization of the form A = LU

where L is unit lower triangular with ones along the diagonal, and U is
invertible and upper triangular if and only if all principal submatrices of
A are invertible.

3

6. Show both of the computations below can be performed in a backward
stable manner. Assume all of the computations are performed in IEEE
floating point arithmetic. For simplicity also assume, in both parts, x and
A are representable in IEEE floating point arithmetic.

(a) The summation f(x) = x1 + x2 + x3 as a function of x ∈ R3.

(b) The product f(A) = Ax as a function of A ∈ Rn×n only, and for a
fixed x ∈ Rn.

7. Let A ∈ Rm×n, x ∈ Rn and y = Ax. Assume x is representable in
IEEE floating point arithmetic. Furthermore, let ŷ represent the matrix-
vector product Ax computed in IEEE floating point arithmetic. Perform
a backward error analysis to deduce an upper bound on the relative error

‖ŷ − y‖2
‖y‖2

.

8. The purpose of this question is to gain insight into the cause of the
numerical error of the solution of a linear system by LU factorization. In
theory, when a linear system Ax = b is solved by means of the LU factor-
ization with partial pivoting strategy, the overall procedure is backward
stable. The computed solution x̂ satisfies (A+ δA)x̂ = b for some δA such
that

‖δA‖1 ≤ 3n3ρmaxεmach‖A‖1 + o(εmach) (0.2)

where ρmax is the growth factor defined by

ρmax :=
maxj,k=1,...,n |ujk|
maxj,k=1,...,n |ajk|

.

It can be shown that ρmax ≤ 2n−1 (but in practice typically ρmax ≤
√
n). A

backward error analysis employing (0.2) yields

‖x̂− x‖1
‖x‖1

≤ 3n3ρmaxεmach‖A‖1‖A−1‖1 + o(εmach). (0.3)

4

Recall that the quantity κ1(A) = ‖A‖1‖A−1‖1 is called the condition num-
ber of the matrix A.

On the course website, the following Matlab m-file is made available:

• plot condition number.m: to plot the condition number κ1(A) =

‖A‖1‖A−1‖1 with respect to the size of the matrix n for a given class
of matrices.

The routine takes three parameters. The first two parameters lb, ub deter-
mine the interval [lb, ub] in which the size of the matrix n varies. The third
is a string (such as ‘lotkin’, ‘kahan’, ‘leslie’, ‘randn’) identifying the fam-
ily of matrices on which you would be experimenting with the rounding
errors. There is a built-in Matlab routine gallery, which generates ma-
trices from various families (type help gallery for more information re-
garding this routine). You can experiment with most of the families that
can be generated by the Matlab command gallery. Here you are specifi-
cally expected to experiment with ‘lotkin’, ‘ris’, ‘riemann’ and ‘chebvand’.

(a) Plot the condition numbers for ‘lotkin’, ‘ris’, ‘riemann’ and ‘cheb-
vand’ with sizes varying in [5, 10].

(b) Consider the 10 × 10 linear systems Ax = b with A chosen as one
of the ‘lotkin’, ‘ris’, ‘riemann’ and ‘chebvand’ matrices. For each of
these matrices repeat the following: (1) set x equal to the vector of
ones; (2) form b = Ax; (3) solve the system Ax̂ = b.

(i) Based on equation (0.3) and your observations in part (a), how
many of the decimal digits of x (the exact solution) and x̂ (the
computed solution) would you expect to match?

(ii) Perform the sequence of computations (1)-(3) in Matlab. You
can form a specific matrix by typing

>> A = gallery(matname,10);

where matname is ’lotkin’, ’ris’, ’riemann’, or ’chebvand’.
Do you observe the accuracy that you expect in (i)?

5

The next question is not the part of the homework. Your solution to this
will not be evaluated.

9. We have discussed in class how to compute an LU factorization for a
square invertible matrix A ∈ Cn×n using the partial pivoting strategy. An
alternative to the partial pivoting strategy is the full pivoting strategy, for
which a pseudocode is given below. What kind of factorization does this

Input: Invertible A ∈ Rn×n

Output: Upper triangular U ∈ Cn×n, a lower triangular L ∈
Cn×n and p, q ∈ Rn−1.

L← In
for j = 1, . . . , n− 1 do

Let q, p ∈ {j, . . . , n} be such that |aq,p| = max{|a`,m| | `,m = j, . . . , n}.
A(j, j : n)←→ A(q, j : n)

A(1 : n, j)←→ A(1 : n, p)

L(j, 1 : j − 1)←→ L(q, 1 : j − 1).
for k = j + 1, . . . , n do
L(k, j)← A(k, j)/A(j, j)

A(k, j : n)← A(k, j : n)− L(k, j)A(j, j : n)
end for

end for
U ← A

LU factorization algorithm with full pivoting generate? In particular, how
are A and L,U related?

6

