
Math 504, Fall 2018 - Homework 4

December 13, 2018

This homework involves only one computational question that expects an
implementation of the QR Algorithm for Hermitian matrices stated in de-
tail below.

Solution of Dense Hermitian Eigenvalue Problems by the QR Algorithm

The QR algorithm is the most-widely employed algorithm to compute all
eigenvalues of a dense matrix A ∈ Cn×n.

The aim in this question is to implement the QR algorithm with Wilkin-
son shifts for the solution of dense eigenvalue problems. Assume in all
parts that the input matrix A is Hermitian.

Algorithm 1 The QR Algorithm with Shifts

A0 ← A

for k = 0, 1, . . . do
Choose a shift σk
Compute a QR factorization Ak − σkI = Qk+1Rk+1

Ak+1 ← Rk+1Qk+1 + σkI

end for
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1. SinceA is Hermitian, its Hessenberg formH = Q∗AQ for some uni-
tary Q ∈ Cn×n is also Hermitian, that is its Hessenberg form H is
tridiagonal.

Design a numerical algorithm to compute the QR factorization of
a tridiagonal matrix by 2 × 2 Householder reflectors. It is essential
that your algorithm requiresO(n) flops. Your Matlab routine should
look like

function [U,R] = qrTriD(A)

for k = 1:n-1

% Form Householder vector v for the kth column

U(1:2,k) = v;

% Apply Orthogonal Transformation to A

end

R = A;

return

At termination U must be a matrix of size 2 × (n − 1). Do not form
the Q factor of A = QR explicitly. Q could be constructed from U ,
but this is not necessary for the QR algorithm. Test your implemen-
tation as follows.

(i) Create a random matrix : A5 = randn(5);

(ii) Form the Hermitian part of the random matrix : HA5 = (A5 +

A5’)/2;

(iii) Calculate its tridiagonal (Hessenberg) form : TD5 = hess(HA5);

(iv) Compute the QR factorization : [U,R5] = qrTriD(TD5);

(v) Check the Q factor : Q = TD5/R5;

(vi) See how close it is to orthogonality : norm(eye(5) - Q’*Q)

The norm at the last step must be close to εmach = 2−53 ≈ 1.11 ·10−16.
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2. Implement one iteration of the QR algorithm with shifts working on
tridiagonal matrices. In other words, in Algorithm 1 above, given
a tridiagonal matrix Ak, your Matlab routine must produce Ak+1

(which remains tridiagonal). First you must call qrTriD and com-
pute the QR factorization ofAk−σkI. Then, using the returned out-
put parameters U andR, you must performRQ+σkI. It is essential
that your implementation requiresO(n) flops for the multiplication
RQ. Here you need to exploit the special structures ofQ, specifically
the fact that it is made of 2 × 2 Householder reflectors, as well as R
which turns out to be bidiagonal. Your Matlab routine should be of
the following form.

function Anew = qrIteration(A,mu)

[n,n1] = size(A);

[U,R] = qrTriD(A - mu*eye(n));

% Perform Anew = R*Q + mu*eye(n) without forming Q,

% instead by utilizing U

return

3. Implement the QR Algorithm with Wilkinson shifts using your rou-
tine qrIteration from part 2 above. For initial reduction to tridi-
agonal form use the built-in Matlab routine hess. Your implemen-
tation must use deflations, that is if any of the subdiagonal entries
is sufficiently close to zero, your routine must start solving smaller
eigenvalue problems. I suggest to implement a recursive routine.

Test your implementation on various Hermitian matrices, for in-
stance on the ones available through the Matlab routine gallery

or on random matrices. For a matrix A, that is not Hermitian, you
could perform the experiments on the Hermitian part (A + A∗)/2.
Compare the eigenvalues returned by your routine with the eigen-
values returned by the routine eig in Matlab. For your convenience,
a pseudocode of the overall algorithm is provided on the next page.
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1: % Stage 1
2: Compute a tridiagonal H ∈ Cn×n s.t.

H = Q∗AQ

for some unitary Q ∈ Cn×n.
3: % Stage 2
4: if H is 1× 1 or 2× 2 then
5: Λ← eigenvalues of H calculated using algebraic formulas
6: Return Λ

7: else
8: repeat
9: Choose the Wilkinson shift σ

10: Compute a QR factorization H − σI = QR

11: H ← RQ+ σI

12: if H is of the form H =

[
H1 0

0 H2

]
for some H1 ∈ Ck×k, H2 ∈ C(n−k)×(n−2) with k ∈ [1, n− 1] then

13: Λ1 ← Apply Stage 2 on H1.
14: Λ2 ← Apply Stage 2 on H2.

15: Λ←
[

Λ1

Λ2

]
16: Return Λ

17: end if
18: until
19: end if
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Additional theoretical questions about eigenvalue, singular value compu-
tations, as well as Krylov subspace methods are provided below. Solutions
to these are not going to be collected or evaluated.

1. Let v(1) and v(2) be two linearly independent eigenvectors of

B =

[
1 7

3 5

]
.

Suppose also that {q(k)} denotes the sequence of vectors generated by
the inverse iteration with shift σ = 2, and starting with an initial vector
q0 = α1v

(1) + α2v
(2) ∈ C2 where α1, α2 are nonzero scalars.

Determine the subspace that span{q(k)} is approaching as k →∞.

2. Suppose that the power iteration is applied to a Hermitian matrix
A ∈ Cn×n such that |λ1| = |λ2| > |λ3| where λ1, λ2, λ3 denote the largest
three eigenvalues of A in absolute value. Would you expect the power it-
eration to converge in exact arithmetic? What happens to the vectors in
the sequence in the limit, and how quickly? Explain.

3. In class, it was shown that a unit vector q ∈ Cn×n that is an estimate
for a unit eigenvector v of a given matrix A ∈ Cn×n associated with an
eigenvalue λ satisfies

|λ− r(q)| ≤ 2‖A‖2‖v − q‖2.

Here, r(q) := q∗Aq is the Rayleigh quotient.

WhenA is Hermitian, better estimates can be deduced. This is due to the
orthogonality of the eigenvectors of A. Denote the orthonormal set of
eigenvectors ofAwith {v(1), v(2), . . . , v(n)}, and the associated eigenvalues
with λ1, λ2, . . . , λn. The question concerns, given an estimate q ∈ Cn for
the eigenvector v = v(1), how good of an estimate r(q) is for the associated
eigenvalue λ = λ1.

(a) The vector q can be expanded as q = c1v
(1) + c2v

(2) + · · · + cnv
(n) for

scalars c1, . . . , cn. Show that
∑n

k=1 |ck|2 = ‖q‖22 = 1.
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(b) Show that
∑n

k=2 |ck|2 ≤ ‖v(1) − q‖22.

(c) Derive an expression for the Rayleigh quotient r(q) = q∗Aq in terms
of the coefficients cj and the eigenvalues λj .

(d) Show that |λ1 − r(q)| ≤ κ‖v(1) − q‖22, where κ := maxk=2,...,n |λ1 − λk|.
(Hint: exploit λ1 =

∑n
k=1 λ1|ck|2.)

4. The QR algorithm is the standard approach to compute the eigenval-
ues of a dense matrix A ∈ Cn×n. Below pseudocodes are provided for the
QR algorithm without and with shifts.

Algorithm 2 The QR Algorithm without Shifts

A0 ← A

for k = 0, 1, . . . do
Compute a QR factorization Ak = Qk+1Rk+1

Ak+1 ← Rk+1Qk+1

end for

Algorithm 3 The QR Algorithm with Shifts

A0 ← A

for k = 0, 1, . . . do
Choose a shift σk
Compute a QR factorization Ak − σkI = Qk+1Rk+1

Ak+1 ← Rk+1Qk+1 + σkI

end for

(a) Apply one iteration of the QR algorithm without shifts to the matrix

A =

[
3 2

4 1

]
.

(b) Apply one iteration of the QR algorithm to the matrix A given in (a)
with the shift σ = 6.
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5. In class, it was shown that the (normalized) simultaneous power itera-
tion is equivalent to the QR algorithm. In this question, you are expected
to establish the equivalence of the QR algorithm and unnormalized si-
multaneous power iteration. A pseudocode for the QR Algorithm without
shifts (Algorithm 1) is provided in the previous question. A pseudocode
for the unnormalized simultaneous power iteration is given below.

Algorithm 4 Unnormalized Simultaneous Power Iteration

for k = 1, . . . ,m do
Compute a QR factorization Ak = Q̂kR̂k

Λ̂k ← Q̂∗
kAQ̂k

end for

Show that a QR factorization for Ak is given by

Ak = Q1Q2 . . . Qk︸ ︷︷ ︸
Q̂k

Rk . . . R2R1︸ ︷︷ ︸
R̂k

.

Here, Qk, Rk are as defined in Algorithm 1.

6. Let A ∈ Cm×n, and

B =

[
0 A

A∗ 0

]
.

(a) Show that if σ is a singular value of A, then σ and −σ are the eigen-
values of B.

(b) Show that if λ is an eigenvalue of B, then |λ| is a singular value of
A. Write down also the left and right singular vectors of A corre-
sponding to the singular value |λ| in terms of the eigenvector v of B
associated with the eigenvalue λ.

7. A pseudocode for the QR Algorithm for singular value computation
is given below. If the matrix A is initially bidiagonal, then the sequence
{Ak} remains bidiagonal, which you are expected to show in this ques-
tion. This reduces the cost of each iteration of the QR algorithm signifi-
cantly, indeed linear with respect to m and n.
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Algorithm 5 The QR Algorithm for Singular Values

A0 ← A

for k = 0, 1, . . . do
Choose a shift σk
Compute a QR factorization A∗

kAk − σkI = Qk+1Rk+1

Compute a QR factorization AkA
∗
k − σkI = Pk+1Sk+1

Ak+1 ← P ∗
k+1AkQk+1

end for

(a) Exploiting the identities

(AkA
∗
k−σkI)Ak = Ak(A∗

kAk−σkI) and (A∗
kAk−σkI)A∗

k = A∗
k(AkA

∗
k−σkI),

show that Ak+1 = Sk+1AkR
−1
k+1 and A∗

k+1 = Rk+1A
∗
kS

−1
k+1.

(b) Show that if Ak is upper triangular, then so is Ak+1.

(c) Show that if A∗
k is Hessenberg, then so is A∗

k+1.

Parts (b)-(c) above combined imply that if Ak is bidiagonal, then so is
Ak+1.

8. Let A ∈ Cn×n be a matrix whose eigenvalues are sought. Recall the
recurrence

AQk = Qk+1Hk+1 (0.1)

for the Arnoldi process where

Qk =
[
q(1) q(2) . . . q(k)

]
∈ Cn×k, n� k

has orthonormal columns that span the Krylov subspace

Kk := span{b, Ab, . . . , Ak−1b}, (0.2)

and Hk+1 ∈ C(k+1)×k is a Hessenberg matrix. The eigenvalues of H̃k =

Q∗
kAQk ∈ Ck×k are supposedly good estimates for the extreme eigenval-

ues of A, and called the Ritz values.

Suppose that at the kth step of the Arnoldi process the Hessenberg matrix
Hk+1 is such that its (k + 1, k) entry satisfies h(k+1)k = 0.
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(a) Simplify the Arnoldi recurrence (0.1).

(b) Show that the Krylov subspaceKk is an invariant subspace ofA, that
is show that

AKk := {Av | v ∈ Kk} ⊆ Kk.

(c) Show thatKk = Kj for all j > k.

(d) Show that each eigenvalue of H̃k is an eigenvalue of A.

9. Let us consider the Krylov subspace Kk once again defined as in (0.2)
for a given matrix A ∈ Cn×n and a vector b ∈ Cn. Throughout this ques-
tion, assume dim (Kk) = k. In this case the Arnoldi process generates an
orthonormal basis Qk := {q(1), . . . , q(k)} for Kk. Especially, letting Qk =[
q(1) q(2) . . . q(k)

]
, the eigenvalues of the matrix H̃k = Q∗

kAQk cap-
ture some of the eigenvalues of A well in certain occasions.

To generate the orthonormal basis Qk and the matrix H̃k, we rely on the
recurrence (0.1), and the fact that H̃k = Hk+1(1 : k, 1 : k).

(a) Suppose A ∈ Cn×n is Hermitian. Simplify the recurrence (0.1).

(b) Write down an efficient pseudocode to generateQk+1 and H̃k for an
Hermitian matrix A ∈ Cn×n based on the simplified recurrence in
part (a).
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