MATH 504: Numerical Methods I

Instructor: Emre Mengi

Fall Semester 2018 1st Midterm Examination

	#1	30	
	#2	25	
NAME	 #3	25	
STUDENT ID	#4	20	
	 Σ	100	
SIGNATURE	 		,

- Put your name, student ID and signature in the spaces provided above.
- Duration for this exam is 120 minutes.

Problem 1. Let

$$A = \begin{bmatrix} 1 & 0\\ 2 & 2\\ 0 & 1 \end{bmatrix}.$$

$$\tag{1}$$

- (a) (20 points) Calculate a reduced singular value decomposition of *A* given in (1).
- (b) (10 points) For the matrix A in (1), write down a 3×2 matrix B_* such that rank $(B_*) = 1$ and

$$||B_* - A||_2 \leq ||B - A||_2$$

for all $B \in \mathbb{C}^{3 \times 2}$ with $\operatorname{rank}(B) = 1$.

Math 504, Midterm

Problem 2. Consider the 3×3 matrix given below.

$$A = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{6} & 1/\sqrt{2} \\ 1/\sqrt{3} & 2/\sqrt{6} & 0 \\ 1/\sqrt{3} & -1/\sqrt{6} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{6} & 2/\sqrt{6} & -1/\sqrt{6} \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \end{bmatrix}$$
(2)

- (a) (10 points) Is A in (2) positive semi-definite? If it is, explain why. If it is not, provide a vector $q \in \mathbb{R}^3$ such that $q^T A q < 0$.
- (b) (15 points) Write down a full singular value decomposition of *A* in (2). Describe also what the set

$$\{Av \mid v \in \mathbb{R}^3 \text{ such that } \|v\|_2 = 1\}$$

corresponds to geometrically.

Problem 3. Suppose that $P \in \mathbb{C}^{n \times n}$ is a projector, but $P \neq I_n$ and $P \neq 0$.

- (a) (9 points) Show that $||P||_2 = 1$.
- (b) (8 points) Show that $\sigma_n(P) = 0$, that is show that the smallest singular value of *P* is 0.
- (c) (8 points) Now suppose in particular that P is the orthogonal projector onto span $\{v\}^{\perp}$ for a given nonzero vector $v \in \mathbb{C}^n$. Give an expression for P in terms of v.

Math 504, Midterm

Problem 4. (20 points) A matrix $H \in \mathbb{C}^{n \times n}$ is called Hessenberg if $h_{ij} = 0$ for all $i, j \in \{1, ..., n\}$ such that i - j > 1. For instance, the matrix

3	-2	1	5
-4	1	2	$5 \\ 1 \\ 4 \\ -5$
0	-1	3	4 -5
0	0	2	-5

is Hessenberg.

For every matrix $A \in \mathbb{C}^{n \times n}$, there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ and a Hessenberg matrix $H \in \mathbb{C}^{n \times n}$ such that

$$Q^*AQ = H. \tag{3}$$

Given a matrix $A \in \mathbb{C}^{n \times n}$, design an efficient algorithm, in particular write down a pseudocode, that computes a Hessenberg matrix $H \in \mathbb{C}^{n \times n}$ satisfying (3) for some unitary matrix $Q \in \mathbb{C}^{n \times n}$. Your algorithm does not need to form the unitary matrix Q explicitly, rather it suffices if it only returns H. Count the number of flops required by your algorithm. Math 504, Midterm