Math 504: Numerical Methods I

Instructor: Emre Mengi

Fall Semester 2018
1st Midterm Examination

- Put your name, student ID and signature in the spaces provided above.
- Duration for this exam is 120 minutes.

Problem 1. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \tag{1}\\
2 & 2 \\
0 & 1
\end{array}\right]
$$

(a) (20 points) Calculate a reduced singular value decomposition of A given in (1).
(b) (10 points) For the matrix A in (1), write down a 3×2 matrix B_{*} such that $\operatorname{rank}\left(B_{*}\right)=1$ and

$$
\left\|B_{*}-A\right\|_{2} \leq\|B-A\|_{2}
$$

for all $B \in \mathbb{C}^{3 \times 2}$ with $\operatorname{rank}(B)=1$.

Problem 2. Consider the 3×3 matrix given below.

$$
A=\left[\begin{array}{rrr}
1 / \sqrt{3} & -1 / \sqrt{6} & 1 / \sqrt{2} \tag{2}\\
1 / \sqrt{3} & 2 / \sqrt{6} & 0 \\
1 / \sqrt{3} & -1 / \sqrt{6} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{rrr}
3 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{rcr}
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
-1 / \sqrt{6} & 2 / \sqrt{6} & -1 / \sqrt{6} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2}
\end{array}\right]
$$

(a) (10 points) Is A in (2) positive semi-definite? If it is, explain why. If it is not, provide a vector $q \in \mathbb{R}^{3}$ such that $q^{T} A q<0$.
(b) (15 points) Write down a full singular value decomposition of A in (2). Describe also what the set

$$
\left\{A v \mid v \in \mathbb{R}^{3} \text { such that }\|v\|_{2}=1\right\}
$$

corresponds to geometrically.

Problem 3. Suppose that $P \in \mathbb{C}^{n \times n}$ is a projector, but $P \neq I_{n}$ and $P \neq 0$.
(a) (9 points) Show that $\|P\|_{2}=1$.
(b) (8 points) Show that $\sigma_{n}(P)=0$, that is show that the smallest singular value of P is 0 .
(c) (8 points) Now suppose in particular that P is the orthogonal projector onto $\operatorname{span}\{v\}^{\perp}$ for a given nonzero vector $v \in \mathbb{C}^{n}$. Give an expression for P in terms of v.

Problem 4. (20 points) A matrix $H \in \mathbb{C}^{n \times n}$ is called Hessenberg if $h_{i j}=0$ for all $i, j \in\{1, \ldots, n\}$ such that $i-j>1$. For instance, the matrix

$$
\left[\begin{array}{rrrr}
3 & -2 & 1 & 5 \\
-4 & 1 & 2 & 1 \\
0 & -1 & 3 & 4 \\
0 & 0 & 2 & -5
\end{array}\right]
$$

is Hessenberg.
For every matrix $A \in \mathbb{C}^{n \times n}$, there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ and a Hessenberg matrix $H \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
Q^{*} A Q=H \tag{3}
\end{equation*}
$$

Given a matrix $A \in \mathbb{C}^{n \times n}$, design an efficient algorithm, in particular write down a pseudocode, that computes a Hessenberg matrix $H \in \mathbb{C}^{n \times n}$ satisfying (3) for some unitary matrix $Q \in \mathbb{C}^{n \times n}$. Your algorithm does not need to form the unitary matrix Q explicitly, rather it suffices if it only returns H. Count the number of flops required by your algorithm.

