Math 504: Numerical Methods - I

Midterm - Fall 2010
Duration : 75 minutes

Name

Student ID

$\# 1$	20	
$\# 2$	20	
$\# 3$	20	
$\# 4$	20	
$\# 5$	20	
Σ	100	

Signature

- Put your name and student ID in the boxes above.
- No calculators or any other electronic devices are allowed.
- This is a closed-book and closed-notes exam.
- Show all of your work; full credit will not be given for unsupported answers.

Question 1. Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 9 \\
12 & 8
\end{array}\right]
$$

with 2 -norm equal to $5 \sqrt{10}$. Note also that

$$
A\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=5 \sqrt{10}\left[\begin{array}{l}
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]
$$

(a) Find a singular value decomposition for A.
(b) Calculate
(i) the distance to the nearest singular matrix in 2-norm, that is calculate

$$
\beta(A)=\min \left\{\|\Delta A\|_{2}:(A+\Delta A) \text { is singular }\right\},
$$

(ii) the nearest singular matrix $\left(A+\Delta A_{*}\right)$ satisfying

$$
\left\|\Delta A_{*}\right\|_{2}=\beta(A)
$$

Question 2. This question concerns the orthogonal projectors.
(a) Given the subspace $\mathcal{W}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]\right\}$.
(i) Find an orthonormal basis for the subspace that is orthogonal to \mathcal{W}.
(ii) Find an orthogonal projector onto \mathcal{W}.
(b) Show that if $P \in \mathbf{C}^{n \times n}$ is an orthogonal projector and $v \in \mathbf{C}^{n}$, then $P v$ is the orthogonal projection of v onto range (P). Use the definition of an orthogonal projection given below in your proof.

Definition: Given a subspace \mathcal{S} of \mathbf{C}^{n} and a vector $v \in \mathbf{C}^{n}$. We call the vector $v_{\mathcal{S}} \in \mathbf{C}^{n}$ the orthogonal projection of v onto \mathcal{S} if

$$
\text { (i) } v_{\mathcal{S}} \in \mathcal{S} \quad \text { and } \quad \text { (ii) } v_{\mathcal{S}} \perp\left(v-v_{\mathcal{S}}\right) \text {. }
$$

Question 3. A matrix $H \in \mathbf{C}^{m \times n}$ with $m \geq n$ is called Hessenberg if $h_{i j}=0$ whenever $i>(j+1)$. Every matrix $A \in \mathbf{C}^{m \times n}$ has a QH factorization of the form

$$
A=Q H
$$

where $Q \in \mathbf{C}^{m \times m}$ is unitary and $H \in \mathbf{C}^{m \times n}$ is Hessenberg.
Devise an algorithm to calculate the QH factorization of $A \in \mathbf{C}^{m \times n}$ and calculate the total number of flops required by your algorithm.

Question 4. The population of the US is listed at various years in the table below.

t (year)	$s=(t-1940) / 5$	y (population in ten millions)
1955	$s_{1}=3$	$y_{1}=17$
1960	$s_{2}=4$	$y_{2}=18$
2000	$s_{3}=12$	$y_{3}=28$

(a) Pose the problem of finding the line $\ell(s)=x_{1} s+x_{0}$ minimizing

$$
\sqrt{\sum_{i=1}^{3}\left(\ell\left(s_{i}\right)-y_{i}\right)^{2}}
$$

with respect to the unknows $x_{0}, x_{1} \in \mathbf{R}$ as a least-squares problem in the form minimize $_{x \in \mathbf{R}^{2}}\|A x-b\|_{2}$.
(b) Solve the least squares problem in (a), consequently determine the line that best represents the US population in the least-squares sense, by exploiting the QR factorization of A.

Question 5. Consider the roots of the polynomial $q(x)=x^{2}+a x-2$ as a function of $a \in \mathbf{R}$. In particular in this question you are expected to analyze the sensitivity of the root of $q(x)$ that is equal to 1 when $a=1$ with respect to perturbations in a. Denote this root (as a function of a) by $r: \mathbf{R} \rightarrow \mathbf{R}$.
(a) Find the absolute condition number κ for r at $a=1$.
(b) Find the relative condition number $\tilde{\kappa}$ for r at $a=1$.

