MATH 504: Numerical Methods - I

Midterm - Fall 2013 Duration : 100 minutes

		#1	25	
		#2	30	
NAME		#3	20	
Student ID		#4	25	
		Σ	100	
Signature				

- Put your name and student ID in the space provided above.
- No calculators or any other electronic devices are allowed.
- This is a closed-book exam, but you can use notes.
- Show all of your work; full credit will not be given for unsupported answers.

Midterm

Question 1.

(a) (15 pts) Write down a rank two matrix $A \in \mathbb{R}^{3 \times 2}$ with a pair of consistent left and right singular vectors given by

$$u = \begin{bmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix} \text{ and } v = \begin{bmatrix} 1 \\ -1 \end{bmatrix},$$

respectively. In other words, your matrix must satisfy $Av = \sigma u$ and $u^T A = \sigma v^T$ for some real scalar $\sigma > 0$.

(b) (10 pts) Find a matrix $B \in \mathbb{R}^{3 \times 2}$ of rank one such that $||B - A||_2$ is as small as possible where A is the matrix you provided in part (a).

Question 2.

- (a) (10 pts) Let $A \in \mathbb{R}^{m \times n}$. Show that $\operatorname{Col}(A^T) = \operatorname{Null}(A)^{\perp}$.
- (b) (10 pts) Calculate a QR factorization for B^T where

$$B = \left[\begin{array}{rrrr} 2 & -2 & -2 & 2 \\ 1 & 1 & 0 & 1 \end{array} \right].$$

(c) (10 pts) Determine the orthogonal projector onto Null(B) for B in part (b).

Question 3. This question concerns the following least squares problem:

$$\operatorname{minimize}_{x \in \mathbb{R}^2} \left\| \begin{bmatrix} 1\\0\\1 \end{bmatrix} - \begin{bmatrix} 1&2\\1&2\\1&2 \end{bmatrix} x \right\|$$

- (a) (10 pts) Find a solution x_* to the least squares problem above.
- (b) (10 pts) Find the solution x_{**} to least squares problem above such that $||x_{**}||_2 \le ||\hat{x}||_2$ for any solution \hat{x} to the least squares problem.

Question 4. (25 pts) A matrix $H \in \mathbb{R}^{m \times n}$ is called *Hessenberg* if $h_{ij} = 0$ whenever i > j + 1. For instance a 4×4 Hessenberg matrix is of the form

$$\left[\begin{array}{ccccc} x & x & x & x \\ x & x & x & x \\ 0 & x & x & x \\ 0 & 0 & x & x \end{array}\right],$$

where x denotes an entries that is possibly nonzero.

Given an Hessenberg matrix $H \in \mathbb{R}^{m \times n}$ with $m \ge n$, write down an algorithm to compute its QR factorization of the form H = QR based on Householder reflectors, where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular.

You do not need to form the Q factor explicitly, it would suffice to return the vectors q_k such that $Q_k = I - 2q_k q_k^T$ is the Householder reflectors used at the k-th step. Make sure that your algorithm performs as few flops as possible. Count the number of flops required by your algorithm.