Math 504: Numerical Methods - I

Midterm - Fall 2013
Duration : 100 minutes

Name

Student ID

$\# 1$	25	
$\# 2$	30	
$\# 3$	20	
$\# 4$	25	
Σ	100	

Signature

- Put your name and student ID in the space provided above.
- No calculators or any other electronic devices are allowed.
- This is a closed-book exam, but you can use notes.
- Show all of your work; full credit will not be given for unsupported answers.

Question 1.

(a) (15 pts) Write down a rank two matrix $A \in \mathbb{R}^{3 \times 2}$ with a pair of consistent left and right singular vectors given by

$$
u=\left[\begin{array}{l}
1 / \sqrt{6} \\
2 / \sqrt{6} \\
1 / \sqrt{6}
\end{array}\right] \quad \text { and } \quad v=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

respectively. In other words, your matrix must satisfy $A v=\sigma u$ and $u^{T} A=\sigma v^{T}$ for some real scalar $\sigma>0$.
(b) (10 pts) Find a matrix $B \in \mathbb{R}^{3 \times 2}$ of rank one such that $\|B-A\|_{2}$ is as small as possible where A is the matrix you provided in part (a).

Question 2.

(a) (10 pts) Let $A \in \mathbb{R}^{m \times n}$. Show that $\operatorname{Col}\left(A^{T}\right)=\operatorname{Null}(A)^{\perp}$.
(b) (10 pts) Calculate a QR factorization for B^{T} where

$$
B=\left[\begin{array}{rrrr}
2 & -2 & -2 & 2 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

(c) (10 pts) Determine the orthogonal projector onto $\operatorname{Null}(B)$ for B in part (b).

Question 3. This question concerns the following least squares problem:

$$
\operatorname{minimize}_{x \in \mathbb{R}^{2}}\left\|\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right] x\right\|
$$

(a) (10 pts) Find a solution x_{*} to the least squares problem above.
(b) (10 pts) Find the solution $x_{* *}$ to least squares problem above such that $\left\|x_{* *}\right\|_{2} \leq\|\hat{x}\|_{2}$ for any solution \hat{x} to the least squares problem.

Question 4. (25 pts) A matrix $H \in \mathbb{R}^{m \times n}$ is called Hessenberg if $h_{i j}=0$ whenever $i>j+1$. For instance a 4×4 Hessenberg matrix is of the form

$$
\left[\begin{array}{llll}
x & x & x & x \\
x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x
\end{array}\right]
$$

where x denotes an entries that is possibly nonzero.
Given an Hessenberg matrix $H \in \mathbb{R}^{m \times n}$ with $m \geq n$, write down an algorithm to compute its QR factorization of the form $H=Q R$ based on Householder reflectors, where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular.
You do not need to form the Q factor explicitly, it would suffice to return the vectors q_{k} such that $Q_{k}=I-2 q_{k} q_{k}^{T}$ is the Householder reflectors used at the k-th step. Make sure that your algorithm performs as few flops as possible. Count the number of flops required by your algorithm.

