MATH 504: Numerical Methods I

Instructor: Emre Mengi

Fall Semester 2016 Midterm Exam Thursday November 10th, 2016

	#1	20	
	#2	30	
NAME	 #3	20	
~	#4	25	
SIGNATURE	 Σ	95	

- Please put your name and signature in the space provided above.
- This is a closed-book and closed-notes exam.
- You are expected to support your answer in each question, or otherwise you may not be awarded full-credit.

 ${\bf Question} \ {\bf 1} \ {\rm Let}$

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \\ 2 & 6 \end{bmatrix}.$$

(a) (10 points) Compute a <u>reduced QR factorization</u> for A by means of the Gram-Schmidt procedure.

(b) (10 points) Compute a <u>full QR factorization</u> for A by means of the Householder triangularization.

Question 2

Let us consider the matrix A given below in its orthogonal rank 1 form.

$$A = 3\sqrt{6} \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} + 2\sqrt{7} \begin{bmatrix} 1/\sqrt{14} \\ -3/\sqrt{14} \\ 2/\sqrt{14} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

(a) (8 points) Write down the orthogonal projector onto $\operatorname{Col}(A)^{\perp}$.

(b) (7 points) Provide a matrix $B \in \mathbb{R}^{3 \times 2}$ that is of rank 1, and such that $||B - A||_2$ is as small as possible.

(c) (7 points) Write down the pseudoinverse of A.

(d) (8 points) Find

- a basis \mathcal{Y} for $\operatorname{Col}(A)$,
- a basis *X* for C²,
 and a diagonal matrix Σ ∈ ℝ^{2×2}₊ with nonnegative real entries along its diagonal

such that the following holds:

$$[y]_{\mathcal{Y}} = \Sigma[x]_{\mathcal{X}} \quad \forall x \in \mathbb{C}^2, \ \forall y \in \mathbb{C}^3 \text{ satisfying } y = Ax.$$

Question 3

(a) (15 points) Consider the linear system Ax = b for a given invertible matrix $A \in \mathbb{C}^{n \times n}$ and a given vector $b \in \mathbb{C}^n$.

Prove that the <u>relative condition number</u> of the solution x of this linear system with respect to perturbations in A - keeping the right-hand side $b \in \mathbb{C}^n$ fixed, using the matrix 2-norm on $\mathbb{C}^{n \times n}$ and the vector 2-norm on \mathbb{C}^n - is given by $\widetilde{\mathbb{C}} = \|A\| + \|A^{-1}\|$

$$\widetilde{\kappa} = \|A\|_2 \|A^{-1}\|_2.$$

(b) (5 points) Now suppose that the linear system Ax = b is solved for x by a backward stable algorithm. In particular, the computed solution \hat{x} by this algorithm satisfies

$$(A + \delta A)\widehat{x} = b$$
 for some $\delta A \in \mathbb{C}^{n \times n}$ such that $\frac{\|\delta A\|_2}{\|A\|_2} = O(\epsilon_{\text{mach}}).$

Perform a *backward error analysis* to deduce an upper bound on the relative error

$$\frac{\|\widehat{x} - x\|_2}{\|x\|_2} \, .$$

Question 4

(a) (10 points) A matrix $A \in \mathbb{C}^{n \times p}$ with $n \ge p$ is called *upper Hessenberg* if $a_{jk} = 0$ whenever j > k + 1. For instance, a 4×3 upper Hessenberg matrix is of the form

$$\left[\begin{array}{cccc} x & x & x \\ x & x & x \\ 0 & x & x \\ 0 & 0 & x \end{array}\right]$$

where an x denotes an entry that is possibly not zero.

Every matrix $A \in \mathbb{C}^{n \times p}$ with $n \ge p$ has a QH factorization of the form

$$A = Q \cdot H$$

where $Q \in \mathbb{C}^{n \times n}$ is unitary, and $H \in \mathbb{C}^{n \times p}$ is upper Hessenberg.

Write down a pseudocode based on Householder reflectors that computes a QH factorization for a given $A \in \mathbb{C}^{n \times p}$ with $n \ge p$.

- Your pseudocode must return *H* explicitly.
- It can return a set of vectors $u^{(1)}, u^{(2)}, \ldots$ (rather than the unitary factor Q), as the practice followed in the class, such that Q is defined implicitly in terms of $I 2u^{(j)}[u^{(j)}]^*$.

(b) (15 points) Now suppose you are given a square matrix $A \in \mathbb{C}^{n \times n}$ such that A(1:j,1:j) is invertible for j = 1, ..., n. The invertibility condition implies the existence of a lower triangular matrix $L \in \mathbb{C}^{n \times n}$, an upper triangular matrix $U \in \mathbb{C}^{n \times n}$, and a diagonal matrix $D \in \mathbb{C}^{n \times n}$ such that

$$L \cdot A \cdot U = D . \tag{1}$$

Write down a pseudocode that computes a lower triangular $L \in \mathbb{C}^{n \times n}$, an upper triangular $U \in \mathbb{C}^{n \times n}$ and a diagonal $D \in \mathbb{C}^{n \times n}$ satisfying (1). Perform a flop count for your pseudocode.