Math 504: Numerical Methods I

Instructor: Emre Mengi

Fall Semester 2016
Midterm Exam
Thursday November 10th, 2016

NAME \quad| $\# 1$ | 20 | | |
| :--- | :--- | :--- | :--- |
| SIGNATURE | $\# 2$ | 30 | |
| $\# 3$ | 20 | | |
| $\# 4$ | 25 | | |
| Σ | 95 | | |

- Please put your name and signature in the space provided above.
- This is a closed-book and closed-notes exam.
- You are expected to support your answer in each question, or otherwise you may not be awarded full-credit.

Question 1 Let

$$
A=\left[\begin{array}{rr}
1 & -1 \\
2 & 2 \\
2 & 6
\end{array}\right]
$$

(a) (10 points) Compute a reduced $Q R$ factorization for A by means of the Gram-Schmidt procedure.
(b) (10 points) Compute a full $Q R$ factorization for A by means of the Householder triangularization.

Question 2

Let us consider the matrix A given below in its orthogonal rank 1 form.

$$
A=3 \sqrt{6}\left[\begin{array}{c}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]\left[\begin{array}{ll}
1 / \sqrt{2} & -1 / \sqrt{2}]+2 \sqrt{7}\left[\begin{array}{r}
1 / \sqrt{14} \\
-3 / \sqrt{14} \\
2 / \sqrt{14}
\end{array}\right]\left[\begin{array}{ll}
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] . . \text {. } \quad \text {. }
\end{array}\right]
$$

(a) (8 points) Write down the orthogonal projector onto $\operatorname{Col}(A)^{\perp}$.
(b) (7 points) Provide a matrix $B \in \mathbb{R}^{3 \times 2}$ that is of rank 1 , and such that $\|B-A\|_{2}$ is as small as possible.
(c) (7 points) Write down the pseudoinverse of A.
(d) (8 points) Find

- a basis \mathcal{Y} for $\operatorname{Col}(A)$,
- a basis \mathcal{X} for \mathbb{C}^{2},
- and a diagonal matrix $\Sigma \in \mathbb{R}_{+}^{2 \times 2}$ with nonnegative real entries along its diagonal
such that the following holds:

$$
[y]_{\mathcal{Y}}=\Sigma[x]_{\mathcal{X}} \quad \forall x \in \mathbb{C}^{2}, \forall y \in \mathbb{C}^{3} \text { satisfying } y=A x
$$

Question 3

(a) (15 points) Consider the linear system $A x=b$ for a given invertible matrix $A \in \mathbb{C}^{n \times n}$ and a given vector $b \in \mathbb{C}^{n}$.

Prove that the relative condition number of the solution x of this linear system with respect to perturbations in A - keeping the right-hand side $b \in \mathbb{C}^{n}$ fixed, using the matrix 2-norm on $\mathbb{C}^{n \times n}$ and the vector 2-norm on \mathbb{C}^{n} - is given by

$$
\widetilde{\kappa}=\|A\|_{2}\left\|A^{-1}\right\|_{2} .
$$

(b) (5 points) Now suppose that the linear system $A x=b$ is solved for x by a backward stable algorithm. In particular, the computed solution \widehat{x} by this algorithm satisfies

$$
(A+\delta A) \widehat{x}=b \text { for some } \delta A \in \mathbb{C}^{n \times n} \text { such that } \frac{\|\delta A\|_{2}}{\|A\|_{2}}=O\left(\epsilon_{\text {mach }}\right)
$$

Perform a backward error analysis to deduce an upper bound on the relative error

$$
\frac{\|\widehat{x}-x\|_{2}}{\|x\|_{2}} .
$$

Question 4

(a) (10 points) A matrix $A \in \mathbb{C}^{n \times p}$ with $n \geq p$ is called upper Hessenberg if $a_{j k}=0$ whenever $j>k+1$. For instance, a 4×3 upper Hessenberg matrix is of the form

$$
\left[\begin{array}{lll}
x & x & x \\
x & x & x \\
0 & x & x \\
0 & 0 & x
\end{array}\right]
$$

where an x denotes an entry that is possibly not zero.
Every matrix $A \in \mathbb{C}^{n \times p}$ with $n \geq p$ has a QH factorization of the form

$$
A=Q \cdot H
$$

where $Q \in \mathbb{C}^{n \times n}$ is unitary, and $H \in \mathbb{C}^{n \times p}$ is upper Hessenberg.
Write down a pseudocode based on Householder reflectors that computes a QH factorization for a given $A \in \mathbb{C}^{n \times p}$ with $n \geq p$.

- Your pseudocode must return H explicitly.
- It can return a set of vectors $u^{(1)}, u^{(2)}, \ldots$ (rather than the unitary factor Q), as the practice followed in the class, such that Q is defined implicitly in terms of $I-2 u^{(j)}\left[u^{(j)}\right]^{*}$.
(b) (15 points) Now suppose you are given a square matrix $A \in \mathbb{C}^{n \times n}$ such that $A(1: j, 1: j)$ is invertible for $j=1, \ldots, n$. The invertibility condition implies the existence of a lower triangular matrix $L \in \mathbb{C}^{n \times n}$, an upper triangular matrix $U \in \mathbb{C}^{n \times n}$, and a diagonal matrix $D \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
L \cdot A \cdot U=D \tag{1}
\end{equation*}
$$

Write down a pseudocode that computes a lower triangular $L \in \mathbb{C}^{n \times n}$, an upper triangular $U \in \mathbb{C}^{n \times n}$ and a diagonal $D \in \mathbb{C}^{n \times n}$ satisfying (1). Perform a flop count for your pseudocode.

