Math 504 (Fall 2010) - Lecture 1

IEEE Double Precision Arithmetic
and Operation Count

Emre Mengi
Department of Mathematics
Koç University, Istanbul
emengi@ku.edu.tr
Outline

- IEEE double precision arithmetic
- Performing floating point operations in IEEE standards
- Floating point operation count (flop count)
IEEE Double Precision Arithmetic

- 64 binary digits (bits) for each floating point number

\[
f = \pm (1.b_1b_2\ldots b_{52})_2 \times 2^{(a_1a_2\ldots a_{11})_2}
\]
IEEE Double Precision Arithmetic

- 64 binary digits (bits) for each floating point number

\[f = \pm (1.b_1 b_2 \ldots b_{52})_2 \times 2^{(a_1 a_2 \ldots a_{11})_2} \]

- 52 bits for the significand (mantissa)
- 11 bits for the exponent
- 1 bit for the sign
IEEE Double Precision Arithmetic

- 64 binary digits (bits) for each floating point number

\[f = \pm (1.b_1b_2\ldots b_{52})_2 \times 2^{(a_1a_2\ldots a_{11})_2} \]

- 52 bits for the significand (mantissa)
- 11 bits for the exponent
- 1 bit for the sign

e.g.

\[
(1.\underbrace{1}_{b_1}0\ldots0\underbrace{1}_{b_{52}})_2 \times 2^{(00\ldots010)_2} = (1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-52}) \times 2^2
\]
IEEE Double Precision Arithmetic

11 bits can be used to represent $2^{11} = 2048$ exponent values.
IEEE Double Precision Arithmetic

- 11 bits can be used to represent $2^{11} = 2048$ exponent values.

- $(00\ldots0)_2$ and $(11\ldots1)_2$ are reserved for special purposes.
 - $(11\ldots1)_2$ for ∞ and NaN (not a number e.g. $\infty - \infty$).
IEEE Double Precision Arithmetic

- 11 bits can be used to represent $2^{11} = 2048$ exponent values.

- $(00\ldots0)_2$ and $(11\ldots1)_2$ are reserved for special purposes.
 - $(11\ldots1)_2$ for ∞ and NaN (not a number e.g. $\infty - \infty$).

- The remaining 2046 exponent values represent any integer in $[-1022, 1023]$.
IEEE Double Precision Arithmetic

- 11 bits can be used to represent \(2^{11} = 2048\) exponent values.

- \((00\ldots0)_2\) and \((11\ldots1)_2\) are reserved for special purposes.
 - \((11\ldots1)_2\) for \(\infty\) and \(NaN\) (not a number e.g. \(\infty - \infty\)).

- The remaining 2046 exponent values represent any integer in \([-1022, 1023]\).

- Let \(x\) be any floating point number in double precision.

\[
-(1.11\ldots1)_2 \times 2^{1023} \leq x \leq (1.11\ldots1)_2 2^{1023}
\]
\[
-((10.0\ldots0)_2 - (0.0\ldots1)_2) \times 2^{1023} \leq x \leq ((10.0\ldots0)_2 - (0.0\ldots1)_2) \times 2^{1023}
\]
\[
-(2 - 2^{-52}) \times 2^{1023} \leq x \leq (2 - 2^{-52}) \times 2^{1023} \approx 1.8 \times 10^{308}
\]
ϵ_{mach}: machine precision (Unit round-off error)

maximal relative error due to floating point representation

$fl(x)$ x x^* $\overline{fl}(x)$
IEEE Double Precision Arithmetic

\(\epsilon_{mach} \): machine precision (Unit round-off error)

maximal relative error due to floating point representation

\[
f l(x) \quad x \quad x_{*} \quad \overline{f l}(x)
\]

\[
x = s \times 2^E \in (R_{\text{min}}, R_{\text{max}})
\]
IEEE Double Precision Arithmetic

\(\epsilon_{mach} \): machine precision (Unit round-off error)

maximal relative error due to floating point representation

\[
x = s \times 2^E \in (R_{\min}, R_{\max})
\]

\[
fl(x) = \hat{s} \times 2^E \text{ (floating point number closest to } x)\]
IEEE Double Precision Arithmetic

\(\epsilon_{\text{mach}} : \) machine precision (Unit round-off error)

maximal relative error due to floating point representation

\[f l(x) \rightarrow x \rightarrow x_* \rightarrow \overline{f l}(x) \]

\(x = s \times 2^E \in (R_{\text{min}}, R_{\text{max}}) \)

\(f l(x) = \hat{s} \times 2^E \) (floating point number closest to \(x \))

\(\overline{f l}(x) = (\hat{s} + 2^{-52}) \times 2^E \)
IEEE Double Precision Arithmetic

\(\epsilon_{mach} \): machine precision (Unit round-off error)

maximal relative error due to floating point representation

\(fl(x) \quad x \quad x^* \quad fl(x) \)

\(x = s \times 2^E \in (R_{\text{min}}, R_{\text{max}}) \)

\(fl(x) = \hat{s} \times 2^E \) (floating point number closest to \(x \))

\(fl(x) = (\hat{s} + 2^{-52}) \times 2^E \)

\(x^* = \frac{fl(x) + fl(x)}{2} = \frac{s \times 2^E + (\hat{s} + 2^{-52}) \times 2^E}{2} = (\hat{s} + 2^{-53}) \times 2^E \)
IEEE Double Precision Arithmetic

\[\epsilon_{mach} : \text{machine precision (Unit round-off error)} \]

maximal relative error due to floating point representation

\[f(x) \quad x \quad x^* \quad f(x) \]

\[x = s \times 2^E \in (R_{\min}, R_{\max}) \]

\[fl(x) = \hat{s} \times 2^E \quad (\text{floating point number closest to } x) \]

\[\overline{f}(x) = (\hat{s} + 2^{-52}) \times 2^E \]

\[x^* = \frac{fl(x) + \overline{f}(x)}{2} = \frac{\hat{s} \times 2^E + (\hat{s} + 2^{-52}) \times 2^E}{2} = (\hat{s} + 2^{-53}) \times 2^E \]

Relative error

\[\frac{|x - fl(x)|}{|x|} \leq \frac{|x^* - fl(x)|}{|x^*|} = \frac{2^{-53} \times 2^E}{s \times 2^E} \leq \frac{2^{-53}}{\epsilon_{mach}} \approx 10^{-16} \quad (|s| \geq 1) \]
IEEE Double Precision Arithmetic

Smallest non-zero number in absolute value
Smallest non-zero number in absolute value

When \((a_1 a_2 \ldots a_{11})_2 = 0\) the floating point number is in the (subnormalized) form

\[(0.b_1 \ldots b_{52})_2 \times 2^{-1022}\]
IEEE Double Precision Arithmetic

- Smallest non-zero number in absolute value

- When \((a_1a_2\ldots a_{11})_2 = 0\) the floating point number is in the (subnormalized) form

 \[(0.b_1\ldots b_{52})_2 \times 2^{-1022}\]

- The smallest number

 \[(0.0\ldots 01)_2 \times 2^{-1022} = 2^{-52} \times 2^{-1022} = 2^{-1074} \approx 4.94 \times 10^{-324}\]
Performing Floating Point Operations in IEEE Standards

- Floating point operations or flops (\oplus, \otimes, \ominus, \oslash) in single or double precision
- IEEE standards require the flops to satisfy

\[
\begin{align*}
x \oplus y &= \text{fl}(x + y) \\
x \ominus y &= \text{fl}(x - y) \\
x \otimes y &= \text{fl}(x \times y) \\
x \oslash y &= \text{fl}(x/y)
\end{align*}
\]

where x and y are floating point numbers.
Performing Floating Point Operations in IEEE Standards

Floating point operations or flops (⊕, ⊖, ⊗, ⊘) in single or double precision

IEEE standards require the flops to satisfy

\[
\begin{align*}
 x \oplus y &= fl(x + y) \\
 x \ominus y &= fl(x - y) \\
 x \otimes y &= fl(x \times y) \\
 x \oslash y &= fl(x/y)
\end{align*}
\]

where \(x \) and \(y \) are floating point numbers.

e.g.

In single precision \(1 \oplus 2^{-23} = 1 + 2^{-23} \), but \(1 \oplus 2^{-24} = 1 \)

(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)
Performing Floating Point Operations in IEEE Standards

Floating point operations or flops ($\oplus, \otimes, \ominus, \oslash$) in single or double precision

IEEE standards require the flops to satisfy

\[
\begin{align*}
 x \oplus y &= fl(x + y) \\
 x \ominus y &= fl(x - y) \\
 x \otimes y &= fl(x \times y) \\
 x \oslash y &= fl(x/y)
\end{align*}
\]

where x and y are floating point numbers.

\textit{e.g.}

In single precision $1 \oplus 2^{-23} = 1 + 2^{-23}$, but $1 \oplus 2^{-24} = 1$

(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

In double precision $1 \oplus 2^{-52} = 1 + 2^{-52}$, but $1 \oplus 2^{-53} = 1$
Performing Floating Point Operations in IEEE Standards

- Floating point operations or flops ($\oplus, \otimes, \ominus, \oslash$) in single or double precision
- IEEE standards require the flops to satisfy

\[
\begin{align*}
x \oplus y &= fl(x + y) \\
x \ominus y &= fl(x - y) \\
x \otimes y &= fl(x \times y) \\
x \oslash y &= fl(x/y)
\end{align*}
\]

where x and y are floating point numbers.

e.g.
In single precision $1 \oplus 2^{-23} = 1 + 2^{-23}$, but $1 \oplus 2^{-24} = 1$
(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

In double precision $1 \oplus 2^{-52} = 1 + 2^{-52}$, but $1 \oplus 2^{-53} = 1$

In double precision

\[
(1 + 2^{-52}) \otimes (2 + 2^{-51}) = fl(2 + 2^{-51} + 2^{-51} + 2^{-103})
\]

\[
= fl((1 + 2^{-52} + 2^{-52} + 2^{-104}) \times 2) = 2(1 + 2^{-51})
\]
Efficiency of an algorithm is determined by the total number of \(\oplus, \otimes, \ominus, \oslash \) required.
Efficiency of an algorithm is determined by the total \# of \oplus, \otimes, \ominus, \oslash required.

Crudeness in flop count
Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of $\oplus, \otimes, \ominus, \oslash$ required.

Crudeness in flop count
- Time required for data transfers is ignored.
Efficiency of an algorithm is determined by the total number of \oplus, \otimes, \ominus, \oslash required.

Crudeness in flop count

- Time required for data transfers is ignored.

- All of the operations \oplus, \otimes, \ominus, \oslash are considered of the same computational difficulty. In reality \otimes, \oslash are more expensive.
Floating Point Operation Count

- Inner (or dot) product: Let \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) be defined as

\[
f(x) = a_1 x_1 + a_2 x_2 + \ldots a_n x_n = a^T x
\]

where \(a = \begin{bmatrix} a_1 & \ldots & a_n \end{bmatrix}^T \in \mathbb{R}^n \) and \(x = \begin{bmatrix} x_1 & \ldots & x_n \end{bmatrix}^T \in \mathbb{R}^n \).

- Pseudocode to compute \(f(x) \)

\[
f \leftarrow 0
\]

\textbf{for} \ j = 1, n \ \textbf{do}

\[
f \leftarrow f + a_j x_j
\]

\underbrace{\text{2 flops}}_{2 \text{ flops}}

\textbf{end for}

Return \(f \)

- Total flop count: 2 flops per iteration for \(j = 1, \ldots, n \)

\[
\text{Total # of flops} = \sum_{j=1}^{n} 2 = 2n
\]
Matrix-vector product: Let \(g : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be defined as

\[
g(x) = Ax = x_1 A_1 + x_2 A_2 + \cdots + x_n A_n
\]

where \(A = \begin{bmatrix} A_1 & \cdots & A_n \end{bmatrix}^T \) is an \(m \times n \) real matrix with \(A_1, \ldots, A_n \in \mathbb{R}^m \) and \(x = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T \in \mathbb{R}^n \).
Matrix-vector product: Let $g : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be defined as

$$g(x) = Ax = x_1 A_1 + x_2 A_2 + \cdots + x_n A_n$$

where $A = [A_1 \ldots A_n]^T$ is an $m \times n$ real matrix with $A_1, \ldots, A_n \in \mathbb{R}^m$ and $x = [x_1 \ldots x_n]^T \in \mathbb{R}^n$.

e.g.

$$\begin{bmatrix}
2 & 1 & -2 \\
1 & 0 & -1 \\
3 & -1 & 2
\end{bmatrix}
\begin{bmatrix}
2 \\
-2 \\
1
\end{bmatrix}
= 2
\begin{bmatrix}
2 \\
1 \\
3
\end{bmatrix}
- 2
\begin{bmatrix}
1 \\
0 \\
-1
\end{bmatrix}
+ 1
\begin{bmatrix}
-2 \\
-1 \\
2
\end{bmatrix}
= \begin{bmatrix}
0 \\
1 \\
10
\end{bmatrix}$$
Floating Point Operation Count

1. Pseudocode to compute \(g(x) = Ax \)

 Given an \(m \times n \) real matrix \(A \) and \(x \in \mathbb{R}^n \).

 \[
 g \leftarrow 0 \quad (\text{where } g \in \mathbb{R}^n)
 \]

 \[
 \text{for } j = 1, n \text{ do}
 \]

 \[
 g \leftarrow g + x_j A_j
 \]

 \[
 \quad 2m \text{ flops}
 \]

 \[
 \text{end for}
 \]

 Return \(g \)

2. Above \(g + x_j A_j \) requires \(m \) addition and \(m \) multiplication for each \(j \).

3. Total flop count: \(2m \) flops per iteration for \(j = 1, \ldots, n \)

\[
\text{Total \# of flops} = \sum_{j=1}^{n} 2m = 2mn
\]
Floating Point Operation Count

Inner product view of the matrix-vector product $g(x) = Ax$.

$$g(x) = \begin{bmatrix} \bar{A}_1 x \\ \bar{A}_2 x \\ \vdots \\ \bar{A}_m x \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{nn}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix} \quad \text{where} \quad A = \begin{bmatrix} \bar{A}_1 \\ \bar{A}_2 \\ \vdots \\ \bar{A}_m \end{bmatrix}$$

and $\bar{A}_1, \ldots, \bar{A}_m$ are the rows of A and a_{ij} is the entry of A at the ith row and jth column.
Floating Point Operation Count

- Inner product view of the matrix-vector product \(g(x) = Ax \).

\[
g(x) = \begin{bmatrix}
\bar{A}_1 x \\
\bar{A}_2 x \\
\vdots \\
\bar{A}_m x
\end{bmatrix} = \begin{bmatrix}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n
\end{bmatrix}
\]

where \(A = \begin{bmatrix}
\bar{A}_1 \\
\bar{A}_2 \\
\vdots \\
\bar{A}_m
\end{bmatrix}\)

and \(\bar{A}_1, \ldots, \bar{A}_m \) are the rows of \(A \) and \(a_{ij} \) is the entry of \(A \) at the \(i \)th row and \(j \)th column.

e.g.

\[
\begin{bmatrix}
2 & 1 & -2 \\
1 & 0 & -1 \\
3 & -1 & 2
\end{bmatrix}
\begin{bmatrix}
2 \\
-2 \\
1
\end{bmatrix} = \begin{bmatrix}
(2)(2) + (1)(-2) + (-2)(1) \\
(1)(2) + (0)(-2) + (-1)(1) \\
(3)(2) + (-1)(-2) + (2)(1)
\end{bmatrix} = \begin{bmatrix}
0 \\
1 \\
10
\end{bmatrix}
\]
Floating Point Operation Count

- Pseudocode to compute \(g(x) = Ax \) exploiting the inner-product view

Given an \(m \times n \) real matrix \(A \) and \(x \in \mathbb{R}^n \).

\[
g \leftarrow 0 \quad \text{(where } g \in \mathbb{R}^n \text{)}
\]

for \(i = 1, m \) do

\[
\text{for } j = 1, n \text{ do}
\]

\[
g_i \leftarrow g_i + a_{ij} x_j
\]

\(2 \text{ flops} \)

end for

end for

Return \(g \)

- Total flop count: 2 flops per iteration for each \(j = 1, \ldots, n \) and \(i = 1, \ldots, m \)

\[
\text{Total # of flops} = \sum_{i=1}^m \sum_{j=1}^n 2 = \sum_{i=1}^m 2n = 2mn
\]
Matrix-matrix product: Given an $n \times p$ matrix A and a $p \times m$ matrix X. The product $B = AX$ is an $n \times m$ matrix and defined such that

$$b_{ij} = \bar{A}_i X_j = \sum_{k=1}^{p} a_{ik} x_{kj}$$

where \bar{A}_i is the ith row of A, X_j is the jth column of X and b_{ij}, a_{ij}, x_{ij} denote the (i,j)-entry of B, A and X, respectively.
Matrix-matrix product: Given an $n \times p$ matrix A and a $p \times m$ matrix X. The product $B = AX$ is an $n \times m$ matrix and defined such that

$$b_{ij} = \bar{A}_i X_j = \sum_{k=1}^{p} a_{ik} x_{kj}$$

where \bar{A}_i is the ith row of A, X_j is the jth column of X and b_{ij}, a_{ij}, x_{ij} denote the (i, j)-entry of B, A and X, respectively.

e.g.

$$\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 2(-1) + 1(1) & 2(1) + 1(-2) \\ 1(-1) + 0(1) & 1(1) + 0(-2) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix}$$
Floating Point Operation Count

Pseudocode to compute the product $B = AX$

Given $n \times p$ and $p \times m$ matrices A and X.

1. $B \leftarrow 0$
2. for $i = 1, n$ do
 1. for $j = 1, m$ do
 1. for $k = 1, p$ do
 1. $b_{ij} \leftarrow b_{ij} + a_{ik}x_{kj}$
 2. \text{2 flops}
 1. end for
 1. end for
3. end for
4. Return g

Total flop count: 2 flops per iteration for each $k = 1, \ldots, p$, $j = 1, \ldots, m$ and $i = 1, \ldots, n$

$$\text{Total \# of flops} = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{p} 2 = 2nmp$$
Floating Point Operation Count

- Big-O notation
Floating Point Operation Count

- Big-O notation

- The inner product $a^T x$ requires $2n = O(n)$ flops (linear # of flops).
Floating Point Operation Count

- **Big-O notation**
 - The inner product $a^T x$ requires $2n = O(n)$ flops (linear # of flops).
 - The matrix-vector product Ax for a square matrix A (with $m = n$) requires $2n^2 = O(n^2)$ flops (quadratic # of flops).
Big-O notation

- The inner product $a^T x$ requires $2n = O(n)$ flops (linear # of flops).
- The matrix-vector product Ax for a square matrix A (with $m = n$) requires $2n^2 = O(n^2)$ flops (quadratic # of flops).
- The matrix-matrix product AX for square $n \times n$ matrices A and X (with $m = n = p$) requires $2n^3 = O(n^3)$ flops (cubic # of flops).
Floating Point Operation Count

- **Big-O notation**
 - The inner product $a^T x$ requires $2n = O(n)$ flops (linear # of flops).
 - The matrix-vector product Ax for a square matrix A (with $m = n$) requires $2n^2 = O(n^2)$ flops (quadratic # of flops).
 - The matrix-matrix product AX for square $n \times n$ matrices A and X (with $m = n = p$) requires $2n^3 = O(n^3)$ flops (cubic # of flops).

- The notation $g(n) = O(f(n))$ means asymptotically $f(n)$ scaled up to a constant grows at least as fast as $g(n)$, *i.e.*

 \[g(n) = O(f(n)) \text{ if there exists an } n_0 \text{ and } c \text{ such that } g(n) \leq cf(n) \text{ for all } n \geq n_0 \]
Floating Point Operation Count

- **Big-O notation**
 - The inner product $a^T x$ requires $2n = O(n)$ flops (linear # of flops).
 - The matrix-vector product Ax for a square matrix A (with $m = n$) requires $2n^2 = O(n^2)$ flops (quadratic # of flops).
 - The matrix-matrix product AX for square $n \times n$ matrices A and X (with $m = n = p$) requires $2n^3 = O(n^3)$ flops (cubic # of flops).

- The notation $g(n) = O(f(n))$ means asymptotically $f(n)$ scaled up to a constant grows at least as fast as $g(n)$, i.e.

\[
g(n) = O(f(n)) \text{ if there exists an } n_0 \text{ and } c \text{ such that } g(n) \leq cf(n) \text{ for all } n \geq n_0
\]

Examples:
- $2n = O(n)$ as well as $2n = O(n^2)$ and $2n = O(n^3)$
Floating Point Operation Count

- **Big-O notation**
 - The inner product $a^T x$ requires $2n = O(n)$ flops (linear # of flops).
 - The matrix-vector product Ax for a square matrix A (with $m = n$) requires $2n^2 = O(n^2)$ flops (quadratic # of flops).
 - The matrix-matrix product AX for square $n \times n$ matrices A and X (with $m = n = p$) requires $2n^3 = O(n^3)$ flops (cubic # of flops).

- The notation $g(n) = O(f(n))$ means asymptotically $f(n)$ scaled up to a constant grows at least as fast as $g(n)$, i.e.

 $g(n) = O(f(n))$ if there exists an n_0 and c such that

 $$g(n) \leq cf(n) \text{ for all } n \geq n_0$$

Examples:
- $2n = O(n)$ as well as $2n = O(n^2)$ and $2n = O(n^3)$
- $2n^2 = O(n^2)$ as well as $2n^2 = O(n^3)$, but $2n^2$ is not $O(n)$.

Lecture 1 - Double Precision and Operation Count – p.16/17
Orthogonality (Trefethen & Bau, Lecture 2)

Norms (Trefethen & Bau, Lecture 3)