LECTURE 22

SIMILARITY TRANSFORMATIONS

Let \(A \in \mathbb{C}^{n \times n} \),
\(S \in \mathbb{C}^{n \times n} \) be invertible.

The transformation
\[
T : A \rightarrow S^{-1}AS
\]
is called a similarity transformation.
The matrices \(A \) and \(S^{-1}AS \) are said to be similar.

EXAMPLE

Consider the similarity transformation
\[
\begin{bmatrix}
-1 & 4 \\
1 & -1
\end{bmatrix}
\]
\[
\begin{bmatrix}
-2 & 2 \\
1 & 1
\end{bmatrix}^{-1} \cdot
\begin{bmatrix}
-1 & 4 \\
1 & -1
\end{bmatrix} \cdot
\begin{bmatrix}
-2 & 2 \\
1 & 1
\end{bmatrix} =
\begin{bmatrix}
-3 & 0 \\
0 & 1
\end{bmatrix}
\]
The matrices

\[
\begin{bmatrix}
-1 & 4 \\
1 & -1
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
-3 & 0 \\
0 & 1
\end{bmatrix}
\]

are similar with the same eigenvalues \(\lambda_1 = -3 \) and \(\lambda_2 = 1 \).

THM (Similarity Transformation & Eigenvalues)

Suppose \(A, B \in \mathbb{C}^{n \times n} \) are similar matrices. Then \(A \) and \(B \) have exactly the same set of eigenvalues with the same algebraic and geometric multiplicity.

Proof

There exists an \(S \) (invertible) such that

\[
B = S^{-1}AS.
\]

But then

\[
\det(B - \lambda I) = \det(S^{-1}AS - \lambda I)
\]

\[
= \det(S^{-1}AS - \lambda S^{-1}S)
\]

(2)
\[= \det (S^{-1}(A-\lambda I)S) \]
\[= \frac{\det (S^{-1}) \det (A-\lambda I) \det (S)}{\neq 0} \]

Therefore
\[\det (A-\lambda I) = 0 \iff \det (B-\lambda I) = 0. \]

In other words, \(A \) and \(B \) have the same characteristic polynomial meaning they share the same eigenvalues with same algebraic multiplicities.

Furthermore, since \(S \) is invertible,
\[\text{rank} (A-\lambda I) = \text{rank} (S^{-1}(A-\lambda IS)) = \text{rank} (B-\lambda I) \]
\[\implies \dim (\text{Null} (A-\lambda I)) = \dim (\text{Null} (B-\lambda I)). \]

Consequently, eigenvalues of \(A \) and \(B \) have the same geometric multiplicities. \(\square \)
EXAMPLE (Algebraic & Geometric Multiplicities)

\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\]

* \(\lambda = 1 \) is the only eigenvalue.
* \(v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \) are associated eigenvectors.
* \(E_{\lambda} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} = \mathbb{R}^2 \) (eigenspace associated with \(\lambda = 1 \))
* Algebraic multiplicity of \(\lambda = 1 \) is 2.
* Geometric multiplicity of \(\lambda = 1 \) is 2.

\[
\begin{bmatrix}
1 & 1 \\
0 & 1 \\
\end{bmatrix}
\]

* \(\lambda = 1 \) is the only eigenvalue.
* \(E_{\lambda} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} \)
* Algebraic multiplicity of \(\lambda = 1 \) is 2.
* Geometric multiplicity of \(\lambda = 1 \) is 1.
THM (Algebraic & Geometric Multiplicities)

Let $A \in \mathbb{C}^{n \times n}$ and $\lambda \in \mathbb{C}$ be an eigenvalue of A. Then

algebraic multip. of λ ≥
geometric multip. of λ

PROOF

Let $\{q_1, q_2, \ldots, q_m\}$ be an orthonormal basis for $E_\lambda = \text{Null}(A-\lambda I)$. Form an unitary matrix of the form

$$Q = \begin{bmatrix} q_1 & q_2 & \cdots & q_m & q_{m+1} & \cdots & q_n \end{bmatrix}.$$

Now A is similar to

$$Q^*AQ = \begin{bmatrix} Q_m^* & \hat{Q}^* \end{bmatrix} \begin{bmatrix} \lambda & Q_m^*Q_m & Q_m^*A\hat{Q} \\ \lambda & \hat{Q}^*Q_m & \hat{Q}^*A\hat{Q} \end{bmatrix}$$

(5)
\[
\begin{bmatrix}
\lambda I_m & Q^* A \hat{Q} \\
0 & \hat{Q}^* A \hat{Q}
\end{bmatrix}
\]

Consequently the algebraic multiplicity of \(\lambda \) as an eigenvalue of \(Q^* A \hat{Q} \) and \(A \) is at least \(m = \dim (E_\lambda) \).

\[\square\]

TERMINOLOGY

An eigenvalue \(\lambda \) is called

* **defective** if its algebraic multiplicity is strictly greater than its geometric multiplicity,

* **simple** if its algebraic multiplicity is one,

* **semi-simple** if its algebraic multiplicity is equal to its geometric multiplicity.

A matrix \(A \in \mathbb{C}^{n \times n} \) is called **non-defective** if

* it has \(n \) linearly independent eigenvectors, equivalently

* all eigenvalues of \(A \) are semi-simple (note that eigenvectors associated with different eigenvalues are linearly independent).
EXAMPLE

\[
\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix}
\]

is defective, because it has only one linearly independent eigenvector lying in \(\text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} \).

* This is due to the fact that the eigenvalue \(\lambda = 1 \) is defective.

\[
\begin{bmatrix}
-1 & 4 \\
1 & -1
\end{bmatrix}
\]

is non-defective, because it has two linearly independent eigenvectors \(v_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \) associated with eigenvalues \(\lambda_1 = -3 \) and \(\lambda_2 = 1 \), respectively.

* This is due to the fact that both eigenvalues are simple (therefore semi-simple).
In general given a non-defective matrix $A \in \mathbb{C}^{n \times n}$ with

* the set of linearly independent eigenvectors $\{v_1, v_2, \ldots, v_n\}$,

* and associated eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$.

\[A v_i = \lambda_i v_i, \quad \ldots, \quad A v_n = \lambda_n v_n \]

\[A \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 \\
\vdots \\
\lambda_n \end{bmatrix} \]

\[A = V \Lambda V^{-1} \]

The decomposition

\[A = V \Lambda V^{-1} \]

where $V \in \mathbb{C}^{n \times n}$ is invertible and $\Lambda \in \mathbb{C}^{n \times n}$ is diagonal is called the eigenvalue (or spectral) decomposition of A.

\[\text{\textcircled{8}} \]
Example

\[
\begin{bmatrix}
-1 & 4 \\
1 & -1
\end{bmatrix}
\begin{bmatrix}
-2 \\
1
\end{bmatrix}
= (3)
\begin{bmatrix}
2 \\
1
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
-1 & 4 \\
1 & -1
\end{bmatrix}
\begin{bmatrix}
2 \\
1
\end{bmatrix}
= (1)
\begin{bmatrix}
2 \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1 & 4 \\
1 & -1
\end{bmatrix}
\begin{bmatrix}
-2 & 2 \\
1 & 1
\end{bmatrix}
= \begin{bmatrix}
-2 & 2 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
-3 & 0 \\
0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1 & 4 \\
1 & -1
\end{bmatrix}
= \begin{bmatrix}
-2 & 2 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
-3 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
-2 & 2 \\
1 & 1
\end{bmatrix}^{-1}
\]

DEFN (Diagonalizability)

A matrix \(A \in \mathbb{C}^{n \times n} \) is called **diagonalizable** if it has an eigenvalue decomposition.

THM (Diagonalizable Matrices)

A matrix \(A \in \mathbb{C}^{n \times n} \) is diagonalizable if and only if

(i) it is non-defective, equivalently

(ii) all of its eigenvalues are semi-simple.
Computation of Eigenvalues (Overview)

Apply similarity transformations of form

\[(+) \ A \rightarrow Q_1^{-1} A Q_1 \rightarrow Q_2^{-1} Q_1^{-1} A Q_1 Q_2 \rightarrow \ldots \rightarrow Q_k^{-1} \ldots Q_1^{-1} A Q_1 \ldots Q_k \rightarrow \underbrace{A_k} \]

so that

\[\lim_{k \to \infty} A_k \text{ is an upper triangular matrix.} \]

REMARKS

* Eigenvalues of a triangular matrix are given by its diagonal entries.

\[\begin{bmatrix} -1 & 1 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} \]

has the characteristic polynomial

\[p(\lambda) = (\lambda + 1)(\lambda - 3)(\lambda - 2) \]

and eigenvalues

\[\lambda_1 = -1, \ \lambda_2 = 3, \ \lambda_3 = 2 \]
* Reduction into a diagonal matrix by similarity transformations is too ambitious; not all matrices are diagonalizable.

* In (++) Q_k is indeed a unitary matrix so that

$$A_k = Q_k^* \ldots Q_1^* A Q_1 \ldots Q_k$$

The reduction into a triangular form by unitary similarity transformations is possible due to the existence of a Schur factorization for every matrix $A \in \mathbb{C}^{n \times n}$.

\[\text{THM (Schur Factorization)}\]

Every matrix $A \in \mathbb{C}^{n \times n}$ has a factorization of the form

$$(++) A = QTQ^*$$

where $Q \in \mathbb{C}^{n \times n}$ is unitary and $T \in \mathbb{C}^{n \times n}$ is upper triangular.
e.g.
\[
\begin{bmatrix}
4 & 1 \\
-2 & 7 \\
\end{bmatrix} = \begin{pmatrix}
\frac{1}{\sqrt{2}} & 1 \\
1 & -1 \\
\end{pmatrix} \begin{bmatrix}
5 & 3 \\
0 & 6 \\
\end{bmatrix} \begin{pmatrix}
\frac{1}{\sqrt{2}} & -1 \\
-1 & 1 \\
\end{pmatrix}
\]

PROOF OF THM - SCHUR FACTORIZATION

The proof is by induction on the size of the matrix.

Base case \((n = 1)\)

Any scalar has trivially a Schur factorization.

Inductive case \((n = k > 1)\)

As the inductive hypothesis suppose \((k-1) \times (k-1)\) matrices have factorizations of the form \((++)\).

Let \(\lambda\) be an eigenvalue of \(A\) and \(\mathbf{q}\) be a unit eigenvector associated with \(\lambda\).
Consider a unitary matrix $Q \in \mathbb{C}^{n \times n}$ of form

$$Q = \begin{bmatrix} q & \hat{Q} \end{bmatrix}$$

satisfying

$$Q^*AQ = \begin{bmatrix} q^* \\ \hat{Q}^* \end{bmatrix} \begin{bmatrix} Aq & A\hat{Q} \\ \lambda q & A\hat{Q} \end{bmatrix}$$

$$= \begin{bmatrix} q^* \\ \hat{Q}^* \end{bmatrix} \begin{bmatrix} \lambda q & A\hat{Q} \\ \lambda q^* & A\hat{Q} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda q^*q & q^*A\hat{Q} \\ \lambda q^*q & A\hat{Q} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda & B \\ 0 & C \end{bmatrix}.$$

By inductive hypothesis $C \in \mathbb{C}^{(k-1) \times (k-1)}$ has a factorization

$$C = \tilde{Q} \tilde{T} \tilde{Q}^*$$

where $\tilde{Q} \in \mathbb{C}^{(k-1) \times (k-1)}$ is unitary, \tilde{T} is upper triangular.
Therefore
\[Q^* A Q = \begin{bmatrix} \lambda & B \\ 0 & \bar{Q}^* \end{bmatrix} \]
\[= \begin{bmatrix} 1 & 0 \\ 0 & \bar{Q} \end{bmatrix} \begin{bmatrix} \lambda & B \bar{Q} \\ 0 & \bar{T} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \bar{Q}^* \end{bmatrix} \]
\[\Rightarrow A = Q \begin{bmatrix} 1 & 0 \\ 0 & \bar{Q} \end{bmatrix} \begin{bmatrix} \lambda & B \bar{Q} \\ 0 & \bar{T} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \bar{Q}^* \end{bmatrix} Q^* \]

where \(\hat{Q} \) is unitary, \(\hat{T} \) is upper triangular implying the existence of a factorization of form \((++)\).

Now suppose \(A \in \mathbb{C}^{n \times n} \) is Hermitian.

\[A^* = A \implies QTQ^* = QT^*Q^* \]
\[\implies T = T^* \]
\[\implies T = \Lambda \text{ is diagonal with real entries.} \]

For an Hermitian matrix \(A \) the Schur factorization becomes an orthogonal eigenvalue decomposition

\[A = Q \Lambda Q^* \quad (\text{equivalently} \quad AQ = Q\Lambda) \]
EXAMPLE

\[
\begin{bmatrix}
1 & 2 \\
2 & 1
\end{bmatrix}
\]

* has real eigenvalues \(\lambda_1 = 3 \), \(\lambda_2 = -1 \)
* and the associated eigenvectors
\[
\mathbf{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]
are orthogonal.

THM (Symmetric Eigenvalue Problem)
Let \(A \in \mathbb{C}^{n \times n} \) be Hermitian. Then

(i) the eigenvalues \(\lambda_1, \ldots, \lambda_n \) of \(A \) are real, and
(ii) there exists a set of associated orthonormal eigenvectors \(\mathbf{v}_1, \ldots, \mathbf{v}_n \).