In this talk I will review the concept of the biembedding of two latin squares. Of particular interest will be the regular biembedding of two isomorphic copies of the latin square corresponding to the cyclic group of order n, denoted C_n. Grannell and Griggs have shown that, for all n, a regular biembedding exists, and in addition, that the automorphism group of the regular biembedding has order $12n^2$. Grannell and Griggs have also developed a doubling construction in which the latin squares of order n can be used to construct a biembedding of latin squares of order $2n$. In this talk I will apply this construction to the regular biembedding of C_n. The result is surprising in that the doubling construction produces a biembedding of two copies of C_{2n}, however the automorphism group of this biembedding has order $12(2n)^2/4 = 12n^2$.