Transforming 6-cycle systems into triple systems

Mariusz Meszka
AGH University of Science and Technology, Kraków, Poland meszka@agh.edu.pl

A Steiner triple system is a pair (V, \mathcal{B}) where V is a finite set and \mathcal{B} is a collection of 3-element subsets of V called triples such that every 2 -subset of V is contained in exactly one triple in \mathcal{B}. Similarly, a 6 -cycle system of order v is a pair (V, \mathcal{C}) where V is a finite set and \mathcal{C} is a collection of 6 -cycles with vertices in V such that every edge of the complete graph on the set V is contained in exactly one 6 -cycle in \mathcal{C}.

There are three different ways to transform a given 6-cycle (a, b, c, d, e, f) into two triangles:

- inscribing means to join pairs of vertices at distance two; in this way two inscribed triangles $\{a, c, e\}$ and $\{b, d, f\}$ are obtained
- converting means to delete two opposite edges $\{a, b\}$ and $\{d, e\}$ and replace them with the edges $\{a, e\},\{b, d\}$
- squashing the 6 -cycle means to identify its two opposite vertices a and d to get the bowtie $\{\{a, b, c\},\{a, e, f\}\}$.

A complete answer to the question on the existence spectrum for a 6-cycle system having the property that its 6 -cycles can be transformed (in three different ways) to produce triples of a Steiner triple system will be presented. Moreover, maximum packings and minimum coverings of complete graphs with 6 -cycles that can be transformed to some partial triple systems will be discussed.

