':w'ave function of a particle be normalized?
Sio 4 stationary state, does that mean that the
7 If a particle moves in empty space with
7 and hence constant energy E = pii2m,isit
lain your answers.
j¢.in a box, we chose & = am/L with n =
oundary condition that ¢ = 0 at x = L,
-2, —3,... also satisfy that boundary con-
S we also choose those values of n?
Gialized, what is the physical significance of the
if |:‘[1|2 versus x between x| and x,7 What is the
raph of }if|* when all x are included? Explain.
16-in 2 box, what would the probability distribu-
1152 Took like if the particle behaved like a classical
particle? Do the actual probability distributions
ssical form when n is very large? Explain,
15 we represented a standing wave as a super-
dves traveling in opposite directions. Can the
“a particle in a box also be thought of as a con-
veling waves? Why or why not? What physical
S docs this representation have? Explain.
atticle in a box is in the ground level, What is the prob-
ling the particle in the right half of the box? (Refer to
on’t evaluate an integral.) Is the answer the same
an excited level? Explain,
functions for a particle in a box {see Fig. 40.12a)
“points. Does this mean that the particle can’t
ese points? Explain.
le confined to an infinite square well, is it cor-
teédch state of definite energy is also a state of defi-
§'it also a state of definite momentum? Expfain.
that momenium is a vector.)
e in:a finite potential well, is it correct to say
ate of definite energy is also a state of definite
‘state of definite momentum? Explain.
b, the probability function is zero at the points
the “walls” of the box. Does this mean that the
es-the walls? Explain.
e'is confined {0 a finite potential well in the region
.does the area under the graph of [$4? in the
-compare to the total area under the graph of
z-all possible x?
thie wave functions for the first three energy lev-
‘a box of width L (see Fig. 40.12a) to the corre-
tions for a finite potential well of the same
}i154). How does the wavelength in the interval
'n = 1 level of the particle in a box compare to
ng wavelength for the » = I level of the finite
Use this to explain why E is less than £ _mpyy in
ed in Fig. 40.15b.
ted in Section 40.3 that a finite potential well
t one bound level, no matter how shallow the
ean that as L — 0, £; — 07 Does this violate the
Certainty principle? Explain.
15a shows that the higher the energy of a bound
Potential well, the more the wave function extends
(ino the intervals x < Oand x > L). Explain why

l:(Newtonian) mechanics, the total energy E of a
be less than the potential energy U because the
& ‘cannot be negative. Yet in barrier tunneling

Ntradiction? Explain.

@ particle passes through regions where E is less

Exercicas 13'5;7

B40.20 Figure 40.17 shows the scanning tunneling microscope
image of 48 iron atoms placed on a copper surface, the pattern
indicating the density of electrons on the copper surface, What can
you infer about the potential-energy function inside the circle of
iron atoms?

840.21 Qualitatively, how would you expect the probability for a
particle to turnel through 2 potential barrier to depend on the
height of the barrier? Explain.

040.22 The wave function shown in Fig. 40.20 is nonzero for
both x < Q0 and x > £. Does this mean that the particle splits into
two parts when it strikes the bamer, with one part tunneling
through the barrier and the other part bouncing off the barrier?
Explain.

84D.23 The probability distributions for the harmonic oscillator
wave functions (see Figs. 40.27 and 40.28) begin to resemble the
classical (Newtonian} probability distribution when the quantum
number 7 becomes large. Would the distributions become the same
as in the classical case in the limit of very large n? Explain,

040.24 In Fig. 40.28, how does the probability of finding a parti-
cle in the center half of the region —A < x < A compare to the
probability of finding the particle in the outer half of the region? Is
this cousistent with the physical interpretation of the situation?
B40.25 Compare the allowed energy levels for the hydrogen atom,
the I?articlfa in a box, and the har- Figure @40.26

monic oscillator. What are the val-

ues of the quantum number n for Ulx)

the ground level and the second

o -
excited level of each system?

B40.28 Sketch the wave function U E

for the potential-energy well shown "% i .. .
in Fig. Q40.26 when E is less than -
Uy and when E, is greater than Uj. ol s

EXERCISES

Section 40.1 Wave Functions and the One-Dimensianal
Schridinger Equation

40.1 * An electron is moving 2s a free particle in the —x-direction
with momentum that has magnitude 4.50 X 107%* kg - m/s. What is
the one-dimensional lime-dependent wave function of the electron?
40.2 + A free particle moving in one dimension has wave function

W(x, 1) = A[efbsmed) ei(z!a—.:m}]

where k and o are positive real constants, {a) At = 0 what are the
two smallest positive values of x for which the probability function
I‘I’(x, t){z is a maximum? (b} Repeat part (a) for time 1 = 27/c.
{c) Calculate v,, as the distance the maxima have moved divided
by the elapsed time. Compare your result to the expression
Uay = (w3 — @)/ (ky — k;) from Exampie 40.1,

40.3 + Consider the free-particle wave function of Exampie 40.1.
Let k; = 3k = 3k Atr = O the probability distribntion function
[ (x, )] has a maximumn at x = 0. (a) What is the smallest posi-
tive value of x for which the probability distribuiion function has a
maximum at time ¢ = 2m/w, where @ = fik%/2m. (b) From your
result in part (a), what is the average speed with which the
probability distribution is moving in the +x-direction? Compare
your result to the expression v,y = (wy ~ w;)/(ky — &) from
Example 40.1.

40.4 ¢ Consider the free particle of Example 40.1. Show that
Vay = {wa — wy}/{ks — k) canbe written as v,, = pyy/m, where
Pay = (Biky + ﬁkl)/z'



1358 CHAPTEF;‘ 40 Quantum Mechanics

40.5 + Consider a wave function given by #(x) = Asinkx, where
k = 27r/X and A {s areal constant, (a) For what values of x is there
the highest prebability of finding the particle described by this
wave function? Explain, (b) For which values of x is the probabil-
ity zero? Explain,

406 ++ Compute |¥f? for ¥ = ysinwr, where i is time inde-
pendent and @ is a real constant. Is this a wave function for a sta-
tionary state? Why or why not?

40.7 « CALC Let ¢ and i, be two solutions of Hq. (40.23) with
energies £y and Ey, respectively, where £y # Ep. Is ff = Ay, +
Byfr, where A and B are nonzero constants, a solution to Eq. (40.23)?
Explain your answer.

40.8 - A particle is described by a wave function ¢(x) = Ao,
where A and « are real, positive constants. If the value of « is
increased, what effect does this have on (a) the particle’s uncer-
tainty in position and (b} the particle’s uncertainty in momentum?
Explain your answers.

40.9 + CALL Linear Combinations of Wave Functions. Let ¥
and 2 be two solutions of Eq. (40.23) with the same energy E.
Show that 4 = By + Cy, is also a solution with energy E, for
any values of the constants B and C.

Section 40.2 Particle in a Bax
46,10 +« CALG A particle moving in one dimension (the x-axis) is
described by the wave function

Ae ™ forx=0
Wix) = {Aeb", for x < 0

where b = 2.00m™L, A > 0, and the +r-axis points toward the
right. {a) Determine A so that the wave function is normalized,
{b) Sketch the graph of the wave function. (c) Find the probability
of finding this particle in each of the following regions: (i) within
50.0 cm of the origin, (ii) on the left side of the origin (can you first
guess the answer by looking at the graph of the wave function?),
(iii) between x = 0.500 m and x = 1.00 m.

40.11 - Ground-Level Billiards. (a) Find the lowest energy
level for a particle in a box if the particle is a billiard ball
{(m = 0.20kg) and the box has a width of 1.3 m, the size of a
billiard table. (Assume that the billiard ball slides without fric-
tion rather than rolls; that is, ignore the rotational kinetic
energy.) (b) Since the energy in part (a) is all kinetic, to what
speed does this correspond? How much time would it take at
this speed for the ball to move from one side of the table to the
other? (c) What is the difference in energy between the n = 2
and n = 1 levels? (d} Are quantum-mechanical effects impor-
tant for the game of billiards?

40.12 + A proton is in a box of width L. What must the width of
the box be for the ground-level energy to be 5.0 MeV, a typical
value for the energy with which the particles in a nucleus are
bound? Compare your resuit to the size of a nucleus—that is, on
the order of 107 m.

40.13 -+ Find the width L of a one-dimensional box for which the
ground-state energy of an electron in the box equals the absolute
value of the gronnd state of a hydrogen atom.

40.14 -+ When a hydrogen atom undergoes a transition from the
n=721tothe n = 1 level, a photon with A = 122 nm is emitted.
(a) If the atom is modeled as an electron in a one-dimensional box,
what is the width of the box in order forthe n = 2ton = 1 transi-
tion to correspond to emission of a photon of this energy? (b) Fora
box with the width calculated in part (a), what is the ground-state
energy? How does this correspond to the ground-state energy of a
hydrogen atom? (c) Do you think a one-dimensional box is a good

’

model for a hydrogen atom? Explain. (Hint: Compare the spacing
between adjacent energy levels as a function of #.)

40.15 ++ A certain atom requires 3.0 eV of energy to excite an
eleciron from the ground level to the first excited level. Model the
ator as an electron in a box and find the width L of the box.

4016 + An electron in a one-dimensional box has ground-state
eneigy 1.00 eV. What is the wavelength of the photon absorbed
when the electron makes a transition to the second excited state?
80.17 + CALE Show that the time-dependent wave function given
by Eq. (40.35) is a solution to the one-dimensional Schrédinger
equation, Bq. (40.23).

40.18 + Recall that [ip|* dx is the probability of finding the particle
that has normalized wave function (x) in the interval x to
x + dx. Consider a particle in a box with rigid walls at x = 0 and
x = L. Let the particle be in the ground levet and use , as given
in Eq. (40.35). (a) For which values of x, if any, in the range from 0
to L is the probability of finding the particle zero? (b) For which
values of x is the probability highest? (c) In parts {a) and (b) are
your answers consistent with Fig. 40.12? Explain.

40.19 - Repeat Exercise 40.18 for the particle in the first excited
level. )

40.20 - GALE (2) Show that = Asinkxr is a solution to
Eq. (40.25) if k = V2mEf#h. (b) Explain why this is an acceptable
wave function for a particle in a box with rigid walls at x = 0 and
x = Lonly if k is an integer multiple of 7 /L.

40.21 + CALC (a) Repeat Exercise 4020 for ¢ = Acoskx.
(b} Explain why this cannot be an acceptable wave function for a
particle in a box with rigid walls at x = 0 and x = L no matter
what the value of k.

40.22 - (a) Find the excitation energy from the ground level to the
third excited level for an electron confined to a box that has a
width of 0.125 nm, (b} The electron makes a transition from the
# = 1ton = 4 level by absorbing & photon. Calculate the wave-
length of this photon.

40.23 + Anelectron is in a box of width 3.0 X 1079 m, What are
the de Broglie wavelength and the magnitude of the momenhim
of the electron if it is in (a) the n = | level; (b) the n = 2 level;
(c) the n = 3 level? In each case how does the wavelength com-
pare to the width of the box?

40.29 -+ CALC Normalization of the Wave Function. Con-
sider a particle moving in one dimension, which we shall call the
x-axis. (a) What does it mean for the wave function of this particle
to be normalized? (b) Is the wave function y(x) = «*, where a is
a positive real number, normalized? Could this be a valid wave
function? (c) If the particle described by the wave function
#(x) = A, where A and b are positive real numbers, is confined
to the range x = 0, determine A {including its units) so that the
wave function is normalized.

Section 46.3 Potential Wells

40.25 - CALE (a) Show that ¢ = Asinkx, where k is a real (not
cownplex) constant, is not a solution of Eq. (40.23) for U = Uy and
E < U (b) Is this ¢ a solution for E > 1j?

40.26 ++ An electron is moving past the square well shown in
Fig. 40.13. The electron has energy E = 30, What is the ratio of
the de Broglie wavelength of the electron in the region x > L to
the wavelength for 0 << x < L?

4D.27 + An clectron is bound in a square well of depth
Uy = 6Ej—pw. What is the width of the wel! if its ground-state
energy is 2.00eV?

40.28 »+ An electron is bound in a square well of width 1.50 nm
and depth U = 6E;_pw. If the electron is initially in the ground




level and absorbs a photon, what maximum wavelength can the
photon have and still liberate the electron from the well?

40.29 + CALL Catculate d’ti/dx? for the wave function of Eq.
(40.38), and show that the function is a solution of Eq. {40.37).
40,30 - An electron is bound in a square well with a depth equal
to six times the ground-level energy E;_mpw of an infinite well of
the same width. The longest-wavelength photon that is absorbed
by the electron has a wavelength of 400.0 nm. Determine the width
of the well.

40.31 »+ A proton is bound in a square well of width 4.0 fu =
4.0 x 107Y m. The depth of the weil is six times the ground-level
energy E;_mw Of the corresponding infinite wel. If the proton
makes a transition from the level with energy E; to the fevel with
energy E; by absorbing a photon, find the wavelength of the
photon,

Section 50.4 Potential Barriers and Tunneling
410.32 s+ Alpha Decay.' In. a Figure E40.32
simpie miodel for a radioactive

nucleus, an alpha particle {m =  U»
6.64 X 10727 kg) is trapped by a Uo
square barrier that has width 2.0 fm g
and height 30.0 MeV. (a) What is

the tunneling probability when ;.
the alpha particle encounters the '*
barrier if its kinetic energy is
1.0 MeV below the top of the bar-
mer (Fig. E40.32)? (b} What is the sl N
tunneling probability if the energy

— -4

___LoMev

2,0 frm

of the alpha particle is 10.0 MeV below the top of the barrier?
40,33 + An electron with initial Kinetic energy 6.0 eV encounters
a barrier with height 11.0 eV. What is the probability of tunneling
if the width of the barrier is (a) 0.80 nm and (b} 0.40 nm?

40,34 + An eleciron with initial Kinetic energy 5.0 eV encounters
a barrier with height €}, and width 0.60 nom. What is the transmis-
sion coefficient if (a) Up = 7.0eV; (b) Uy = 9.0eV; (©) U =
13.0eV?

40,35 - An electron is moving past the square barrier shown in
Fig. 40.19, but the energy of the electron is greater than the barrier
height. If E = 20, what is the ratio of the de Broglie wavelength
of the electron in the region x > L to the wavelength for
0<x<L?

40.36 + A proton with initiat kinetic energy 50.0 eV encounters a
bartier of height 70.0 eV. What is the width of the barrier if the
probability of tunneling is 3.0 X 10737 How does this compare
with the barrier width for an electron with the same energy tunnel-
ing through a barrier of the same height with the same probability?
40.37 »+ {a) An electron with initial kinetic energy 32 eV encoun-
ters a square barrier with height 41 eV and width 0.25 nm. What is
the probability that the electron will tunnel through the barrier?
(b} A proton with the same kinetic energy encounters the same bar-
rier. What is the probability that the proton will tunnel through the
barrier?

Sectian 40.5 The Harmanic Osciilator

40.38 » CALC Show that (x) given by Eq. (40.47) is a solution
to Eq. (40.44) with energy Ey = fiw/2.

40,39 » A wooden block with mass 0.250 kg is oscillating on the
end of a spring that has force constant 110 N/m. Calculate the
ground-level energy and the energy separation hetween adjacent
Ievels. Express your results in joules and in electron volts. Are
quantumn effects important?
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40.40 + A harmenic oscillator absorbs a photon of wavelength
2.65 X 107%m when it undergoes a transition from the ground
state to the first excited state. What is the ground-state energy, in
electron volts, of the osciltator?

4041 + Chemists use infrared absorption specira to identify
chemicals in a sample. In one sample, a chernist finds that light of
wavelength 5.8 pm is absorbed when a molecule makes a iransi-
tion from its ground harmonic oscillator level to its first excited
fevel, (a) Find the energy of this transition. (b} If the melecule can
be treated 4s a harmonic oscillator with mass 5.6 X 10726 kg, find
the force constant.

40,42 ++ The ground-state energy of a harmonic oscillator is
5.60 eV. If the oscillator undergoes a transition from its n = 3 to
n = 2 level by emitting a photon, what is the wavelength of the
photon?

40.43 + In Section 40.5 it is shown that for the ground level of a
harmonic oscillator, AxAp, = #/2. Do a similar analysis for an
excited level that has quantum number n. How does the uncer-
tainty product AxAp, depend on n?

40.44 -+« For the ground-level harmonic oscillator wave function
#(x) given in Eq, (40.47), [#{* has a maximum at x = 0. {a) Com-
pute the ratio of Jf* at x = +A to |44f? at x = 0, where A is given
by Eq. (40.48) with n = O for the ground level. (b} Compute the
ratio of |y[* at x = +24 to |]? at x = 0. In each case is your
result consistent with what is shown in Fig. 40.27?

40.45 +- For the sodium atom of Example 40.8, find (a) the
ground-state energy, (b) the wavelength of a photon emitted when
the n = 4 to n = 3 transition occurs; {c) the enerpy difference for
any Az = 1 transition.

PROBLEMS

4046 ¢+ The discussion in Section 40.1 shows that the wave func-
tion ¥ = e "' is g stationary state, where i is time independent
and o is a real (not complex) constant. Consider the wave function
T = e + e where thy and o are different time-
independent functions and w and w, are different real constants.
Assume that r; and i, are real-valued functions, so that aﬁ = 4n
and 15 = 4. Is this ¥ a wave function for a stationary state?
Why or why not?

40,47 ++ A particle of mass m in a one-dimensional box has the
following wave function in the region x = Otox = L:

Tix, 1) = %Jﬁl(x)g—w:i‘/ﬁ + T{}_E%(x)[i&:/ﬁ

Here 44{x) and t;{x) are the normalized stationary-state wave
functions for the n = | and n = 3 levels, and E| and E; are the
energies of these levels. The wave function is zero for x < 0 and
for x > L. {a) Find the value of the probability distribution func-
tion at x = L/2 as a function of time. (b) Find the angular fre-
quency at which the probability distribution function oscillates,
40.48 +» CALL Consider the wave packet defined by

Pixy = A B(k)coskx dk

Let B{k) = &% (a) The function B(k) has its maximum value
at k = 0. Let ky, be the value of k at which B{k) has fallen to half
its maximum value, and define the width of B{k} as wy = ky. In
terms of ¢, what is wy? (b) Use integral tables to evaluate the inte-
gral that gives #(x). For what value of x is #(x} maximum?
{c) Define the width of $(x)} as w, = xy,, where x}, is the positive
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¥Alue of x at which ¢(x) has fallen to half its maximum value.
Aeutate W, in terms of w. (d) The momentum p is equal to Ak/2m,

% the width of B in momentum is wy = hwy/2m, Calculate the

Flodyet Wy, and compare {o the Heisenberg uncertainty principle.

g, CALC {a) Using the integrai in Problem 40.48, determine
®wave function (x) for a function B(k) given by

0 k<0
B{k) = q1/kp, 0=k=ky
0, k> kg

This represents an equal combination of all wave numbers
Ween 0 and kq. Thus Yr(x) represents a particle with average
Wa% number kof2, with a total spread or uncertainty in wave
Mmber of kg, We will call this spread the width wy of B(k), so
Wi s k. (b) Graph B(k) versns & and y(x) versus x for the case
‘?U = 2m /L, where L is a length. Locate the point where t(x) has
1 mayimum value and label this point on your graph. Locate the
two points closest to this maximum (one on each side of it) where
T} = 0, and define the distance along the r-axis between these
%0 points as w;, the width of #(x). Indicate the distance w, on
YOUr graph. What is the value of i, if ko = 2m/L? {c) Repeat
par (b} for the case ky = w/L. (d) The momentum p is equal to
hkf 27, s0 the width of B in momentum is wp = hwy/2w. Calculate
© Product wpw for each of the cases kg = 2m/L and kg = w/L.
SCUss your results in light of the Heisenberg uncertainty principle.
405 | CALE Show that the wave function y(x) = Ae™ is a
Solutigyy of Eq. (40.23) for a particle of mass m, in a region where
© Botential energy is a constant {f, < E. Find an expression for k,
and refate it to the particle's momentum and to its de Broglie
Wavelength,
4081 .." ALE Wave functions like the one in Problem 40.50
can‘ fepresent free particles moving with velocity v = pf{m in the
“irection. Consider a beam of such particles incident on a poten-
tia “hergy step U(x) = 0, for x < 0, and U(x) = U < E, for
20, The wave function for x < 0 is P(x) = Ae™F + pethex,
mpresenting incident and reflected particles, and for x > 0 is
l’{_’('r) = (ke representing transmitted particles. Use the condi-
"ONS that both ¢ and its first derivative mnst be contimuous at
* = 010 find the constants B and C in terms of &, ka, and A.
0.5y, Let AE, be the energy difference between the adjacent
COCIgY levels E, and E,4, for a particle in a box. The ratio
‘n S AR JE, compares the energy of a fevel to the energy separa-
HON of the next higher energy level. (a) For what value of #n is R,
Jargest, and what is this largest R,? (b) What does R, approach as n
CC0meg very large? How does this result compare to the classical
value gor ohis quantity?
.53 | Photon in a Dye Laser. An electron in a long, organic
Moleeyle ysed in a dye laser behaves approximately like a particte
ina Box with width 4.18 nm, What is the wavelength of the photon
eml.tte(i when the electron undergoes a transition (a) from the first
EXClleq jevel 1o the ground Jevel and (b) from the second excited
level tq the first excited levet?
8058 , caig A particle is in the ground tevel of a box that
SXeNds from x = 0 to x = L. (a) What is the probability of find-
1ng the particle in the region between 0 and L/47 Calcnlate this by
NteLating ly(x)|* dx, where ¢ is normalized, from x = 0 to
* = L/4. (b) What is the probability of finding the particle in the
egion o - L/4 to x = L/27 () How do the results of parts {(a)
and (b compare? Expiain, (d) Add the probabilities calculated in
p.arts {a) and (b). (e} Are your resuits in parts {a), (b), and {d) con-
SISTeNt with Fig. 40.12b? Explain.

40.55 «+ GALC What is the probability of finding a particle in a
box of length L in the region between x = /4 and x = 3L/4
when the particle is in (a) the ground level and (b} the first excited
level? (Hint: Integrate Jy(x) | dx, where i is normalized, between
L/4 and 31./4.) (c) Are your results in parts (a) and (b) consistent
with Fig. 40.12b? Explain, ;
40.56 ++ Consider a particle in a box with rigid walls at x = @
and x = L. Let the particle be in the ground level, Calculate the
probability |¢n|2 dx that the particle will be fonnd in the interval x to
x + defor{a)x = L/4; (b)x = L/2; (c) x = 3L/4.

40.57 ++ Repeat Problem 40.56 for a particle in the first excited
level,

40.58 «« CP A particle is confined within a box with perfectly
rigid walls at x = 0 and x = L, Although the magnitude of the
instantaneons force exerted on the particle by the walls is infinite
and the time over which it acts is zero, the impnlse (that involves a
product of force and time) is both finite and quantized. Show that
the impulse exerted by the wall at x = 0-is (nh/L)T and that the
impulse exerted by the wall atx = L is —(nh/L)7. (Hint: You may
wish to review Sectjon 8.1.)

40.59 «+ CALE A fellow student proposes that a possible wave
function for a free particle with mass m (one for which the
potential-energy function U(x) is zero) is

+rx

e’ x <0
oo - {0

, x =40

where « is a positive constant. {a} Graph this proposed wave func-
tion. (b) Show that the proposed wave function satisfies the
Schrédinger equation for x < 0if the energy is £ = Hfizkzﬂm—
that is, if the energy of the particle is negarive. (¢} Show that the
proposed wave function also satisfies the Schridinger equation for
x = 0 with the same energy as in part (b). (d) Explain why the
proposed wave function is nonetheless zof an acceptable solution
of the Schridinger equation for a free particte. (Fint: What is the
behavior of the function at x = 0?) It is in fact impossible for a
free particle (one for which U/(x) = 0) to have an energy less than
zero.

40.60 ++ The penetration distance 7 in a finite potential well is
the distance at which the wave function has decreased to 1 Je ot the
wave function at the classical furning point:

1
Wl =L+ m) = ~y(L)
The penetration distance can be shown to be

A
Vam(ly — E)

The probability of finding the particle beyond the penetration dis-
tance is nearly zero. (a} Find 7 for an electron having a kinetic
energy of 13 eV in a potential well with Iy = 20 eV. (b) Find 7
for a 20.0-Me ¥ proton trapped in a 30.0-MeV-deep potential well.
40.61 + CALC (a) For the finite potential wel of Fig. 40.13, what
relationships among the constanis A and B of Eq. (40.38) and
Cand I of Eq. (40.40) are obtained by applying the boundary con-
dition that ¢ be continuous at x = 0 and at x = L? (b) What rela-
tionships armong A, B, €, and D are obtained by applying the
boundary condition that di/dx be continuous at x = O and at
x = L?

40.62 + An electron with initial kinetic energy 5.5 eV encounters
a square potential barrier with height 10.0 eV. What is the width of




~srier if the electron has a 0.10% probability of tunneling
) the barrier?

. A particle with mass m and total energy E tunnels
a square barrier of height Uj and width L. When the trans-
1 coefficient is rot much less than unity, it is given by

(Up sinhk 2.)2 -
4E(Uy — E)

are sinhxL = (e — &™)/2 is the hyperbolic sine of «Z.
ghow that if xL >> 1, this expression for T approaches
Ea ('40_42), (b} Explain why the restriction x/. >> 1 in part {a)
lies either that the barrier is relatively wide or that the energy £
jatively low compared to Tj. {c) Show that as the particle’s
ident kinetic emergy E approaches the bamier height Up,
approaches {1+ (kL/2)*]", where k = V/2mE/h is the wave
ber of the incident particle. (Hint: If |z << 1, then
77 z.)

64 + P A harmomic oscillator consists of a 0.020-kg mass on
spring. Its frequency is 1.50 Hz, and the mass has a speed of
360 m/s as it passes the equilibrium position. {a) What is the
value of the quantum number » for its energy level? (b) What is the
difference in energy between the levels £, and £, ? Is this differ-
ce detectable?

0.65 » For small amplitudes of oscillation the motion of a
adulum is simple harmonic. For a pendulum with a period of
00 s, find the ground-level energy and the energy difference
tween adjacent energy levels. Express your results in joules and
i slectron voits. Are these values detectable?

0.66 *» Some 164.9-nm photons are emitted in a An = 1 transi-
n within a solid-state lattice. The lattice is modeled as electrons
a Ibox having Iength 0.500 nm. What transition corresponds to
the emitted Hight?

10,67 ++ CALC Show that for y(x) given by Eq. (40.47), the prob-
ability distribution fuuction has 2 maximum at x = 0.

AD.68 ++ CALC (a) Show by direct substitution in the Schrisdinger
equation for the one-dimensional harmonic oscillator that the wave
" function ¢ (x) = Alxe_“zlz 2 where o? = muw/fh, is a solution
with energy corresponding to n = 1 in Eq. (40.46). {(b) Find the
normatization constant 4. (¢) Show that the probability density
has a minimum at x = 0 and maxima at x = *1/w, corresponding
to the classical tuming points for the ground state n = 0.

40.69 ++ CP (a) The wave nature of particles results in the quan-
tum-mechanical situation that a particle confined in a box can
assume only wavelengths that result in standing waves in the box,
with nodes at the box walls. Use this to show that an electron con-
fined in a one-dimensional box of length £ will have energy levels

a

i

8mi?

(Hint: Recall that the relationship between the de Broglie wave-
length and the speed of a nonrelativistic particle is mu = #/A. The
_ energy of the particle is %mvz.) (b) If a hydrogen atom is modeted
" as a one-dimensional box with length equal to the Bohr radius,
what is the energy {in electron volts) of the lowest energy level of
the efectron?

- 40,70 »»+ Consider a potential well defined as U{x) = oo for
x< 0, Ux)=0for0<x <L and U{x) = Up > Oforx > L
{Fig. P40.70). Consider a particle with mass m and kinetic energy
E < L that is trapped in the well. (a) The boundary condition at
the infinite wall (x = 0} is (0) = 0. What must the form of

n
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the tunction #{x) for 0 < x < L
be in order to satisfy both the
Schridinger equation and this
boundary condition? (b} The wave
function must remain finite as
x— 20, What must the form of
the function (x) for x > L be
in order to satisfy both the
Schrédinger equation and this
boundary condition at infinity? {c) Impose the boundary conditions
that yr and &yr/dx are contimous at x = L. Show that the energies
of the atlowed levels are obtained from solutions of the equation
kcotkl. = —x, where k = V2mE/fhand ¢ = V2m{l}y — E)/A.
4077 +++ Section 40.2 consid-
ered a box with walls at x = ( and
x = L, Now consider a box with
width L but centered at x = 0, so
that it extends from x = ~L/2 to
x = +Lf2 (Fig. P40.7t). Note
that this box is symmetric about
x = 0. (a) Consider possible wave _&2 T L}2
fuuctions of the form #(x) =

A sin kx. Apply the boundary conditions at the wail to obtain the
allowed energy levels. (b) Another set of possible wave functions
are functions of the form (x) = Acoskx. Apply the boundary
conditions at the wall to obtain the allowed energy levels. (¢) Com-
pare the energies obtained in parts (a) and {b) to the set of energies
given in Eq. (40.31). (d) An odd function f satisfies the condition
f{x) = —f(—x), and an even function g satisfies g(x) = g{—x).
Of the wave functions from parts {a) and (b), which are even and
which are odd?

Figure P40.70

Figure P40.71

o3

Ulx)

X

CHALLENGE PROBLEMS

40.72 +++ CALC The WKB Approximation. It can be a chal-
lenge to solve the Schridinger equation for the bound-state energy
levels of an arbitrary potential well. An alternative approach that
¢an yield good approximate resubts for the energy levels is the
WKB approximation (named for the physicists Gregor Wentzel,
Hendrik Kramers, and Léon Briilouin, who pioneered its applica-
tion to quanium mechanics). The WKB approximation begins
from three physical statements: (i) According to de Broglie, the
magnitude of momentum p of a quantum-mechanical particle is
p = h/A. (ii) The magnitude of momentum is related to the kinetic
energy K by the relationship X = p2/2m. (iit) If there are no non-
conservative forces, then in Newtonian mechanics the energy E for
a particie is constant and equal at each point to the sum of the
kinetic and potential energies at that point: £ = X + U{x), where
x is the coordinate. (a) Combine these three relationships to show
that the wavelength of the particle at a coordinate x can be written as

h

Vam{E — Ulx)]

Thus we envision a quantum-mechanical particle in a potential
well U{x) as being like a free particle, but with a wavelength A(x)
that is a function of position. (b} When the particle moves into a
region of increasing potential energy, what happens to its wave-
length? (c)} At a point where E = U{x), Newtonian mechanics
says that the particle has zero kinetic energy and must be instanta-
neously at rest. Such a point is called a classical turning point,
since this is where a Newtonian particle must stop its motion and

A(x) =
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reverse direction. As an example, an object oscillating in simple
harmonic motion wih amplitude A moves back and forth berween
the points x = — 4 and x = +A; each of these is a classical turn-
ing point, since there the potential energy %k’xz eqnals the total
CNergy 34’42, In the WKB expression for A(x), what is the wave-
tength at a ¢jagsical tumning point? (d} For a particle in a box with
length L, the walls of the box are classical tumning points (see
Fig. 40.8). Furthermore, the number of wavelengths that fit within
the box must be a hatf-integer (see Fig. 40.10), so that L = (n/2)A
and hence L/ = nf2, where n = 1,2,3,.... [Note that this is a
restalement of Eq. (40.29).] The WKB scheme for finding the
allowed bound-state energy Ievels of an arbitrary potential well is
4n extension of these observations. It demands thar for an alfowed
energy E, there must be a half-integer number of wavelengths
belween the clagsical turning points for that energy. Since the
wavelength in the WKB approximation is not a constant but
depends on x. the number of wavelengths between the classical
turning points ¢ and b for a given value of the energy is the inte-
gral of 1/\(x) between those points:

b b o
a 4\(.1’} 2
Using the expression for A(x) you found in part (a), show that

the WKB condition for an allowed bound-state energy can be
written as

5
j; V2m(E — U{x)] dx = %fl (n=1,213,..)

(n=123..)

(e) As a check on the expression in part (d), apply it to a particle in
a box with walls at v = 0 and x = [, Evaluate the integral and
show that the allowed energy levels according to the WKB approx-
imation are the same as those given by Eq. (40.31). (Hint: Since
the walls of the poy are infinitely high, the points x = G andx = [,
are classica] rning points for any energy E. Iside the box, the
potential energy is zero.) (f) For the finite square well shown in
Fig. 40.13, show that the WKB expression given in part (d) pre-
dicts the same bound-state energies as for an infinite square well of
the same Width, (Hins: Assume £ < Up. Then the classical tumning
POINtS ate at x = () and x = L.) This shows that the WKB approxi-
mation does 5 poor job when the potential-cnergy function changes
discontinuously, as for 4 finite potential well. Tn the next two prob-
lems we congjger situations in which the potential-energy function
changes gradualy and the WKB approximation is much more useful,
40.73 ++« LALE The WKB approximation (see Challenge Problem
40.72) can be uged to calculate the energy levels for a harmonic

oscillator. In thg approximation, the energy levels are the solutions
1o the equatioy

b
/ Vom(E - U(x}] dx =_n2ﬁ n=1273..
a

Here E is the energy, U/(x) is the potential-energy function, and
* = b are the classical turning points (the points at

x =g and

which E is equal to the potential energy, so the Newtonian kinetic
erergy would be zero). (a} Determine the classical tuming points
for a harmonic oscillator with energy £ and force constant &',
(b) Carry out the integral in the WKB approximation and show
that the energy levels in this approximation are £, = fic, where
@=Vi&fmandn=1,2213,.... (Hint: Recall that 4 = hf2a A
useful standard integral is

/ VAT gy = [x/ﬁ ra ar(m)}

where arcsin denotes the inverse sine function. Note that the inte-
grand is even, so the integral from —x to x is equal to twice the
integral from 0 to x.) (¢} How do the approximate energy levels
found in part (b} compare with the true energy fevels given by
Eq. (40.46)7 Does the WKR approximation give an underestimate
or an overestimate of the energy levels?

an.74 +-« CALE Protons, neutrons, and many other particles are
made of more fundamental particles called quarks and antiquarks
{the antimatter equivaient of quarks). A quark and an antiquark can
form a bound state with a variety of different energy levels, each of
which corresponds to a different particle observed in the labora-
tory. As an example, the 4 particle is a low-energy bound state of a
so-called charm quark and its antiquark, with a rest energy of
3097 MeV; the (2S) particle is an excited state of this same
quark-antiquark combination, with a rest energy of 3686 MeV. A
simplified representation of the potential energy of interaction
between a quark and an antiquark is U(x) = Alx], where 4 is a
positive constant and x represents the distance between the quark
and the antiquark. You can use the WKB approximation (see Chal-
lenge Problem 40.72) to determine the bound-state energy fevels
for this potential-energy function. In the WKB approxXimation, the
energy levels are the solutions to the equation

b
l V2m[E — U(x)]dx = %

Here E is the energy, U{x) is the potential-energy function, and
X =a and x = b are the classical turning points (the poinis at
which £ is equal to the potential energy, so the Newtonian kinetic
energy would be zero). {a) Determine the classical tuming points
for the potential U(x) = Alx| and for an energy £, (b) Carry out
the above integral and show that the allowed energy levels in the
WKB approximation are given by

E, = ﬁ(%) WP (n=1,2,3,..)

(n=1,2, 3,..0)

(Hint: The integrand is even, so the integral from —xto x is equal
10 twice the integral from 0 1o x.) {c) Does the difference in energy
between successive levels increase, decrease, or remain the same
as n increases? How does this compare to the behavior of the
energy levels for the harmonic oscillator? For the particle in a box?
Can you suggest a simple rule that relates the difference m energy
between successive levels to the shape of the potential-energy
function?




