11.1 Introduction

In what is to follow we will extend the discussion of Fourier
methods introduced in Chapter 7. It is our intent to provide a
strong basic introduction to the subject rather than a complete
treatment. Bestdes its real mathematical power, Fourier analy-
sis leads to a marvelous way of treating optical processes in
terms of spatial frequencies.* It is always exciting to discover
ancw bag of analytic toys, but it’s perhaps even more valuable
to unfold yet another way of thinking about a broad range of
physical problems—we shall do both.t

The primary motivation here is to develop an understand-
ing of the way optical systems process light to form images. In
the end we want to know all about the amplitudes and phases
of the lightwaves reaching the image plane. Fourier methods
are cspecially suited to that task, so we first extend the treat-
ment of Fourier transforms begun earlier. Several transforms
are particularly useful in the analysis, and these will be con-
sidcred first. Among them is the delta function, which will
subscquently be used to represent a point source of light. How
an optical system responds to an object comprising a large
number of delta-function point sources will be considered in
Section 11.3.1. The relationship between Fourier analysis and

iAs general references for this chapter, see R. C. Jennison, Fourier
Transforms and Convolutions for the Experimentalist; N. F. Barber,
Experimental Correlograms and Fourier Transforms; A. Papoulis,
Systems and Transforms with Applications in Optics; J. W. Goodman,
Introduction to Fourier Optics; J Gaskill, Linear Systems, Fourier
Transforms, and Optics; R. G. Wilson, Fourier Series and Optical
Transform Techniques in Contemporary Optics; and the excellent series
of booklets Images and Information, by B. W. Jones et al.

Fraunhofer diffraction is explored throughout the discussion,
but is given special attention in Section 11.3.3. The chapter
ends with a return to the problem of image evaluation, this
time from a different, though related, perspective: the object is
treated not as a collection of point sources but as a scatterer of
plane waves.

11.2 Fourier Transforms

11.2.1 One-Dimensional Transforms

It was seen in Section 7.4 that a one-dimensional function of
some space variable f(x) could be expressed as a linear combi-
nation of an infinite number of harmonic contributions:

o

l o0
f(x) = — f A(K) cos kxdk+f B(k)sin kx dk| [7.56]
o 0 4]
The weighting factors that determine the significance of the
various angular spatial frequency (k) contributions, that is,
A(k) and B(k), are the Fourier cosine and sine transforms of

J(x) given by

oo
A(k) = f J(x'} cos Kx' dx’

oo
and B(k) = f f(x') sin kx' dx’ [7.57]

respectively. Here the quantity x’ is a dummy variable over
which the integration is carried out, so that neither A(k) nor
B(k) is an explicit function of x’, and the choice of symbol
used to denote it is irrelevant. The sine and cosine transforms
can be consolidated into a single complex exponential expres-
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sion as follows: substituting [Eq. 7.57] into [Eq. 7.56], we
obtain

" +oc
flx) = Lf Cos kxf f(x') cos kx' dx' dk
m Jo —o

o +oc
1
+ f sin kxf J(x') sin kx' dx' dk
7 Jo —oo

But since cos K(x' — x) = cos Kx cos kx’ + sin Kx sin kx',
this can be rewritten as

flx) = lf |if J(x"} cos K(x' —x) dx’:l dk (11.1)
mlo | J-=

The quantity in the square brackets is an even function of k,
and therefore changing the limits on the outer integral leads to

flx) = Lf l:f f(x') cos k(x' —x) dx’:l dk (11.2)
27T —oc —

Inasmuch as we are looking for an exponential representation,
Euler’s theorem comes to mind. Consequently, observe that

—Lf |;[ f(x") sin k(x'—x) dx’:l dk =20
27T -0 —

because the factor in brackets is an odd function of k. Adding
these last two expressions yields the complex* form of the
Fourier integral,

+o0 oo
f(x) = Lf U Fix'ye™®™ dx’]e““ dk (11.3)
27 J—= —o

Thus we can write

flx) = L f F(k)e ™ dk
277' oo

(11.4)

provided that

F(k) = j Flx)e™™ dx (11.5)

*To keep the notation in standard form, and when there’s no loss of
clarity, we omit the tilde symbol that would otherwise indicate a
complex quantity.

having set x’ = x in Eq. (11.5). The function F(k) is the
Fourier transform of f(x), which is symbolically denoted by

F(k) = F{f(x)} (11.6)

Actually, several equivalent, slightly different ways of defin-
ing the transform appear in the literature. For example, the
signs in the exponentials could be interchanged, or the factor
of 1/27 could be split symmetrically between f(x) and F(k);
each would then have a coefficient of 1/ V2. Note that A(k)
is the real part of F(k), while B(k) is its imaginary part, that is,

F(k) = A(k) + iB(k) (11.72)

As was seen in Section 2.4, a complex quantity like this can
also be written in terms of a real-valued amplitude, |F ( k)|, the
amplitude spectrum, and a real-valued phase, ¢(k), the phase
spectrum:

F(k) = |F(k)|e*™ (11.7b)

and sometimes this form can be quite useful [see Eq. (11.96)].
Just as F(k) is the transform of f(x), f(x) itself is said to be
the inverse Fourier transform of F(k), or symbolically
ftx) = FTYF(K} = F{F{f(x)}} (11.8)
and f(x) and F(k) are frequently referred to as a Fourier-trans-
form pair. It’s possible to construct the transform and its
inverse in an even more symmetrical form in terms of the spa-
tial frequency k = 1/X\ = k /2. Still, in whatever way it’s
expressed, the transform will not be precisely the same as the
inverse transform because of the minus sign in the exponen-
tial. As a result (Problem 11.10), in the present formulation,
F{F(k} = 2 f(—x) while F~ {F(k} = f(x)
This is most often inconsequential, especially for even func-
tions where f(x) = f( —x), so we can expect a good deal of par-
ity between functions and their transforms.

Obviously, if f were a function of time rather than space,
we would merely have to replace x by f and then k, the angu-
lar spatial frequency, by w, the angular temporal frequency, in
order to get the appropriate transform pair in the time domain,
that is,

f(t)—lf Flw)e ™' dw (11.9)
27 )
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Figure 11.1 A composite function and its Fourier transform.

and Flw) = Ja flre " d (11.10)

It should be mentioned that if we write f(x) as a sum of
functions, its transform [Eq. (11.5)] will apparently be the sum
of the transforms of the individual component functions. This
can sometimes be quite a convenient way of establishing the
transforms of complicated functions that can be constructed
from well-known constituents. Figure 11.1 makes this proce-
dure fairly self-evident.

11.2 Fourier Transforms 521

Transform of the Gaussian Function

As an example of the method, let’s examine the Gaussian
probability function,

flx) = Ce “ (11.11)

where C = Va/m and a is a constant. If you like. you can
imagine this to be the profile of a pulse at + = 0. The familiar
bell-shaped curve (Fig. 11.2a) is quite frequently encountered
in Optics. It will be germane to a diversity of considerations,
such as the wave packet representation of individual photons.
the cross-sectional irradiance distribution of a laserbeam in the
TEM, mode, and the statistical treatment of thermal light in
coherence theory. Iis Fourier transform, F{f(x}}, is obtained
by evaluating

4+
F(k) :f (Ceﬁ”"l)e’k‘dx
On completing the square, the exponent, —ax” + ikx,
becomes —(x\'a — ik/2\va)” — k*/4a. and letting x\a —
ik/2V a = B yields

4+
C Ly Q2
F(k):-‘:eﬁl\/'mf e BdB
Va —
The definite integral can be found in tables and equals \V/'77;
hence

Fk) = e k7% (11.12)
which is again a Gaussian function (Fig. 11.24), this time with
k as the variable. The standard deviation is defined as the
range of the variable (x or k) over which the function drops by
a factor of e/ = 0.607 of its maximum value. Thus the stan-
dard deviations for the two curves are o, = 1/\/% and oy =

(a) 1Y) (b) Fohy

0 g,

Figure 11.2 A Gaussian and its Fourter transform.



522 Chapter 11 Fourier Optics

V2a and o, 0, = 1. As a increases, f(x) becomes narrower
while, in contrast, F(k) broadens. In other words, the shorter
the pulse length, the broader the spatial frequency bandwidth.

11.2.2 Two-Dimensional Transforms

Thus far the discussion has been limited to one-dimensional
functions, but Optics generally involves two-dimensional sig-
nals: for example, the field across an aperture or the flux-den-
sity distribution over an image plane. The Fourier-transform
pair can readily be generalized to two dimensions, whereupon

+
1 .
flx,y) = Wff F(k\.,k\.)eil(k"‘+k"v)dkxdk‘. (11.13)
i : i

Foc
and F(K. k) = J f Flxy)e Koy e dy  (11.14)

-oc

The quantities k. and K, are the angular spatial frequencies
along the two axes. Suppose we were looking at the image of
a tiled floor made up alternately of black and white squares
aligned with their edges parallel to the x- and y-directions. If
the floor were infinite in extent, the mathematical distribution
of reflected light could be regarded in terms of a two-dimen-
sional Fourier series. With each tile having a length €, the spa-
tial period along either axis would be 2¢, and the associated
fundamental angular spatial frequencies would equal 7/¢.
These and their harmonics would certainly be needed to con-
struct a function describing the scene. If the pattern was finite
in extent, the function would no longer be truly periodic, and
the Fourier integral would have to replace the series. In effect,
Eq. (11.13) says that f{x, y) can be constructed out of a linear
combination of elementary functions having the form
exp[—i(k,x + k,y)]. each appropriately weighted in ampli-
tude and phase by a complex factor F(K,, k). The transform
simply tells you how much of and with what phase each ele-
mentary component must be added to the recipe. In three
dimensions, the elemen_t)ary functions appear as exp[—i(k.x +
k,y + k_z)] or exp(—ik-F), which correspond to planar sur-
faces. Furthermore, if fis a wave function, that is, some sort of
three-dimensional wave f(F, t), these elementary contributions
become plane waves that look like exp[—i(i()-F — wt)]. In oth-
er words, the disturbance can be synthesized out of a linear
combination of plane waves having various propagation num-
bers and moving in various directions. Similarly, in two

dimensions the elementary functions are “oriented” in differ-
ent directions as well. That is to say, for a given set of values
of k. and K,, the exponent or phase of the elementary functions
will be constant along lines

k.x + k,y = constant = A

k A
or y = _f)c‘i'? (11.15)
y v

The situation is analogous to one in which a set of planes nor-
mal to and intersecting the xy-plane does so along the lines
given by Eq. (11.15) for differing values of A. A vector per-
pendicular to the set of lines, call it Ra, would have compo-
nents K, and k,. Figure 11.3 shows several of these lines (for a
given k, and k), where A = 0, +2m, =47 .... The slopes are
all equal to —k,/k, or —\,/\, while the y-intercepts equal
A/k, = AX,/2m. The orientation of the constant phase lines is

lk.V —IXX

— =t RALE

k. A,

The wavelength, or spatial period \,, measured along K, is
obtained from the similar triangles in the diagram, where

Xa/A, =AM /VAL+ A and
Ao =

« = tan~ (11.16)

1
\/ )\;2 + X;2

The angular spatial frequency K, being 21r/X,, is then

(11.17)

k,=VKi+ k2

(11.18)

Figure 11.3 Geometry for Eq. (11.15).



as expected. All of this just means that in order to construct a
two-dimensional function, harmonic terms in addition to those
of spatial frequency k, and k, will generally have to be includ-
ed as well, and these are oriented in directions other than along
the x- and y-axes.

Return for a moment to Fig. 10.7, which shows an aperture,
with the diffracted wave leaving it represented by several dif-
ferent conceptions. One of these ways to envision the compli-
cated emerging wavefront is as a superposition of plane waves
coming off in a whole range of directions. These are the Fouri-
er-transform components, which emerge in specific directions
with specific values of angular spatial frequency—the zero
spatial frequency term corresponding to the undeviated axial
wave, the higher spatial frequency terms coming off at
increasingly great angles from the central axis. These Fourier
components make up the diffracted field as it emerges from
the aperture.

Transform of the Cylinder Function

The cylinder function

flxy) = (11.19)

(Fig. 11.4a) provides an important practical example of the
application of Fourier methods to two dimensions. The math-
ematics will not be particularly simple, but the relevance of the
calculation to the theory of diffraction by circular apertures
and lenses amply justifies the effort. The evident circular sym-
metry suggests polar coordinates, and so let

k. = K, cos a

k.= K, sin «

(11.20
x=rcos b )

y=rsin 0

in which case dx dy = r dr dO. The transform, %{f(x)}, then
reads

« 2w
F(ka’a) _f f eik“rcns(f)fa) do |r dr

=10

(11.21)

Inasmuch as f(x, y) is circularly symmetric, its transform must
be symmetrical as well. This implies that F(k,, «) is indepen-
dent of . The integral can therefore be simplified by letting «
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f(x,

Fk)

(b)

Figure 11.4 The cylinder, or top-hat, function and its transform.

equal some constant value, which we choose to be zero,
whereupon

F(k,) = f f a0 dY \rdr (11.22)
0 0
It follows from Eq. (10.47) that

F(k,) = 2’]Tf Jo(K, rir dr (11.23)
0

the Jo(k,r) being a Bessel function of order zero. Introducing
a change of variable, namely, k,r = w, we have dr = k,, ' dw.
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and the integral becomes
1
k2, Ju=o

Using Eq. (10.50), the transform takes the form of a first-order
Bessel function (see Fig. 10.22), that is,

Ky

Jo(w)w dw (11.24)

2

F(k,) = e

k,aJ\(k,a)

2 ‘]l (kaa)
k.a

The similarity between this expression (Fig. 11.4b) and the
formula for the electric field in the Fraunhofer diffraction pat-
tern of a circular aperture [Eq. (10.51)] is, of course, not acci-
dental.

or F(k,) = 2ma (11.25)

The Lens as a Fourier Transformer

Figure 11.5 shows a transparency, located in the front focal
plane of a converging lens, being illuminated by parallel light.
This object, in turn, scatters plane waves, which are collected
by the lens. and parallel bundles of rays are brought to conver-
gence at its back focal plane. If a screen were placed there, at
2., the so-called transform plane, we would see the far-field
diffraction pattern of the object spread across it. (This is essen-
tially the configuration of Fig. 10.7¢.) In other words, the elec-
tric-field distribution across the object mask, which is known

Ly =

f + f =
21

Figure 11.5 The light diffracted by a transparency at the front
(or object) focal point of a lens converges to form the far-field diffrac-
tion pattern at the back (or image) focal point of the lens.

(a) E(x) (v)

o>

T * 0]

Figure 11.6 The transform of the triangle function is the
sinc? function.

F{EW}

as the aperture function, is transformed by the lens into the
far-field diffraction pattern. Although this assertion is true
enough for most purposes, it’s not exactly true. After all, the
lens doesn’t actually form its image on a plane.

Remarkably, that Fraunhofer E-field pattern corresponds to
the exact Fourier transform of the aperture function—a fact we
shall confirm more rigorously in Section 11.3.3. Here the
object is in the front focal plane, and all the various diffracted
waves maintain their phase relationships traveling essentially
equal optical path lengths to the transform plane. That doesn’t
quite happen when the object is displaced from the front focal
plane. Then there will be a phase deviation, but that is actual-
ly of little consequence, since we are generally interested in
the irradiance where the phase information is averaged out and
the phase distortion is unobservable.

Thus if an otherwise opaque object mask contains a single
circular hole, the E-field across it will resemble the top hat of
Fig. 11.4a, and the diffracted field, the Fourier transform, will
be distributed in space as a Bessel function, looking very
much like Fig. 11.4b. Similarly, if the object transparency
varies in density only along one axis, such that its amplitude
transmission profile is triangular (Fig. 11.6a), then the ampli-
tude of the electric field in the diffraction pattern will corre-
spond to Fig. 11.6b—the Fourier transform of the triangle
function is the sinc-squared function.

11.2.3 The Dirac Delta Function

Many physical phenomena occur over very short durations in
time with great intensity, and one is frequently concerned with
the consequent response of some system to such stimuli. For
example: How will a mechanical device, like a billiard ball,
respond to being slammed with a hammer? Or how will a par-
ticular circuit behave if the input is a short burst of current? In
much the same way, we can envision some stimulus that is a



sharp pulse in the space, rather than the time, domain. A bright
minute source of light embedded in a dark background is
essentially a highly localized, two-dimensional, spatial
pulse—a spike of irradiance. A convenient idealized mathe-
matical representation of this sort of sharply peaked stimulus
is the Dirac delta function d(x). This is a quantity that is zero
everywhere except at the origin, where it goes to infinity in a
manner so as to encompass a unit area, that is,

sy = 0 *70 11.26

= =0 (11.26)
oo

and f o(x) dx = 1 (11.27)

This is not really a function in the traditional mathematical
sense. In fact, because it is so singular in nature, it remained
the focus of considerable controversy long after it was reintro-
duced and brought into prominence by P.A.M. Dirac in 1930.
Yet physicists, pragmatic as they sometimes are, found it so
highly useful that it soon became an established tool, despite
what seemed a lack of rigorous justification. The precise
mathematical theory of the delta function evolved roughly 20
years later, in the early 1950s, principally at the hands of Lau-
rent Schwartz.

Perhaps the most basic operation to which 8(x) can be
applied is the evaluation of the integral

f O(x)f(x)dx

*x

Here the expression f(x} corresponds to any continuous func-
tion. Over a tiny interval running from x = —+yto + centered
about the origin, f(x) = f(0) = constant, since the function is
continuous at x = 0. From x = — to x = —<y and from x =
+vytox = +, the integral is zero, simply because the 5-func-
tion is zero there. Thus the integral equals

+y
f(0)f &(x) dx

-y

Because 8(x) = 0 for all x other than 0, the interval can be van-
ishingly small, that is, y — 0, and still

4y
f O(x)dx =1
—y
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(a) f(x)=8(x)
1 —
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Figure 11.7 The height of the arrow representing the delta function
corresponds to the area under the function.

from Eq. (11.27). Hence we have the exact result that

f 3(x)f(x) dx = f(0) (11.28)

This is often spoken of as the sifting property of the §-func-
tion because it manages to extract only the one value of f(x)
taken at x = O from all its possible values. Similarly, with a
shift of origin of an amount x,,

0 X i X0

XX = Xp

8(x—x0)—{ (11.29)
and the spike resides at x = x, rather than x = 0, as shown in
Fig. 11.7. The corresponding sifting property can be appreci-
ated by letting x — x, = x', then with f(x" + xy) = g(x’).

f &(x — xp)f(x) dx = f 8(x")g(x') dx’ = g(0)
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and since g(0) = f(xy).

J O(x — xp)f(x) dx = f(xp) (11.30)

Formally, rather than worrying about a precise definition of
&(x) for each value of x, it would be more fruitful to continue
along the lines of defining the effect of 6(x) on some other
function f(x). Accordingly, Eq. (11.28) is really the definition
of an entirc operation that assigns a number f(0) to the func-
tion f(x). Incidentally, an operation that performs this service
is called a functional.

It is possible to construct a number of sequences of pulses,
each member of which has an ever-decreasing width and a
concomitantly increasing height, such that any one pulse
encompasses a unit area. A sequence of square pulses of
height a/L and width L/a for whicha = 1, 2, 3,...would fit
the bill; so would a sequence of Gaussians [Eq. (11.11)],

la _ .
S,(x) = |[—e (11.31)
y
as in Fig. 11.8, or a sequence of sinc functions
5,(x) = - sinc (ax) (11.32)
T

Such strongly peaked functions that approach the sifting prop-
erty, that is, for which

-
1imf .(x)f(x) dx = f(0) (11.33)

a—"

are known as delta sequences. It is often useful, but not actu-
ally rigorously correct, to imagine 8(x) as the convergence

a o

Figure 11.8 A sequence of Gaussians.

limit of such sequences as a — . The extension of these ideas
into two dimensions is provided by the definition

Sy =4~ F YT (11.34)

oY 0 otherwise -
o

and ff o(x,y)dxdy =1 (11.35)

and the sifting property becomes

fff(x,y)ﬁ(x = X0)0(y — yo)dxdy = f(xp,y0) (11.36)

Another representation of the 6-function follows from Eq.
(11.3), the Fourier integral, which can be restated as

flx) = f [L f e”‘(*“"dk]f'(x’) dx’
- 27 J -

and hence

f(x) = f o(x — x')f(x") dx’ (11.37)

provided that
+oc
1 o
S(x — x') = f e KT gk (11.38)
277 —oc

Equation (11.37) is identical to Eq. (11.30), since by definition
from Eq. (11.29) 6(x — x') = 8(x’ — x). The (divergent) inte-
gral of Eq. (11.38) is zero everywhere except at x = x'. Evi-
dently, with x" = 0, 8(x) = 6(—x) and

-+ 00 —+ oo
1 ) 1 .
8(x) = — f e gk = — f e*dk  (11.39)
27 J- 297 Jw

This implies, via Eq. (11.4), that the delta function can be
thought of as the inverse Fourier transform of unity, that is,
8(x) = F Y1} and so #{5(x)} = 1. We can imagine a square
pulse becoming narrower and taller as its transform, in turn,
grows broader, until finally the pulse is infinitesimal in width,
and its transform is infinite in extent, in other words, a
constant.

Displacements and Phase Shifts

If the &-spike is shifted off x = 0 to, say, x = xy, its transform
will change phase but not amplitude-—that remains equal to



one. To see this, evaluate
o

8(x — x,)e'™ dy

Fé(x — xp)} = f
From the sifting property [Eq. (11.30)] the expression
becomes

F8(x — xp)} = ' (11.40)

What we see is that only the phase is affected, the amplitude
being one as it was when xy = 0. This whole process can be
appreciated somewhat more intuitively if we switch to the
time domain and think of an infinitesimally narrow pulse
(such as a spark) occurring at t = 0. This results in the gener-
ation of an infinite range of frequency components, which are
all initially in-phase at the instant of creation (¢t = 0). On the
other hand, suppose the pulse occurs at a time ty. Again every
frequency is produced, but in this situation the harmonic com-
ponents are all in phase at t = t,. Consequently, if we extrapo-
late back, the phase of each constituent at r = O will now have
to be different, depending on the particular frequency.
Besides, we know that all these components superimpose to
yield zero everywhere except at f,. so that a frequency-depen-
dent phase shift is quite reasonable. This phase shiftis evident
in Eq. (11.40) for the space domain. Note that it does vary with
the angular spatial frequency K.

All of this is quite general in its applicability, and we
observe that the Fourier transform of a function that is dis-
placed in space (or time) is the transform of the undisplaced
function multiplied by an exponential that is linear in phase
(Problem 11.14). This property of the transform will be of spe-
cial interest presently, when we consider the image of several
point sources that are separated but otherwise identical. The
process can be appreciated diagramatically with the help of
Figs. 11.9 and 7.29. To shift the square wave by /4 to the
right, the fundamental must be shifted ;-wavelength (or, say,
1.0 mm), and every component must then be displaced an
equal distance (i.e., 1.0 mm). Thus each component must be
shifted in phase by an amount specific to it that produces a 1.0-
mm displacement. Here each is displaced, in turn, by a phase
of mm/4. :

Sines and Cosines

We saw earlier (Fig. 11.1) that if the function at hand can be
written as a sum of individual functions, its transform is sim-
ply the sum of the transforms of the component functions.

11.2 Fourier Transforms 527

fx)

-\2 0 A2
m

35— —. phase

4 shift

i sin kx
m

(a)

4 sin3kx
73

<) ﬁphase
4 shift

4

= (sinkx + 3 sin 3 kx)
4

(b}

Sm
=~ fJ<o— " phase
}\ 4 shift

A (sinkx + }sin 3 kx + & sin Skx)
n

4 in Sk

w5

(¢)

Figure 11.9 A shifted square wave showing the corresponding change
in phase for each component wave.
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Suppose we have a string of delta functions spread out uni-
formly like the tecth on a comb,

fx) = > 8(x — xy) (11.41)
J

When the number of terms is infinite, this periodic function is
often called comb(x). In any event, the transform will simply
be a sum of terms, such as that of Eq. (11.40):

Flf) =D ™ (11.42)
J
In particular, if there are two 8-functions, one at x, = d/2 and
the other at x, = —d/2,
Jx) = 8[x = (+d/2)] + 8[x — (—d/2)]

and FLf(x)} = /2 4 omikd/2

which is just

F{fx)} = 2 cos (kd/2) (11.43)
as in Fig. 11.10. Thus the transform of the sum of these two
symmetrical 8-functions is a cosine function and vice versa.
The composite is a real even function, and F(k) = F{f(x)}
will also be real and even. This should be reminiscent of
Young's Experiment with infinitesimally narrow slits—we’ll
come back to it later. If the phase of one of the 8-functions is

shifted, as in Fig. 11.11, the composite function is asymmetri-
cal, it’s odd,

f(x) = 8[x — (+d/2)] = 8[x — (—d/2)]

and FLf(x)y = 2 — ¢R2 =2 gin (kd/2)  (11.44)
(a) [ (b) Fik) = Ark)
1 2
; d d d .

2y

Figure 11.10 Two delta functions and their cosine-function transform.

)
A
&
[=]
+
a2
%)
[=]
<

(@)  fix) {b) Bik)
L, o> |

—d2 ] )
0 dp2 0
. - -2

Figure 11.11 Two delta functions and their sine-function transform.
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Figure 11.12 The spectra of a shifted cosine function.



The real sine transform [Eq. (11.7)] is then

B(k) = 2 sin (kd/2) (11.45)

and it too is an odd function.

This raises an interesting point. Recall that there are two
alternative ways to consider the complex transform: either as
the sum of a real and an imaginary part, from Eq. (11.7a), or as
the product of an amplitude and a phase term, from Eq.
(11.7b). It happens that the cosine and sine are rather special
functions; the former is associated with a purely real contribu-
tion, and the latter is associated with a purely imaginary one.
Most functions, even harmonic ones, will usually be a blend of
real and imaginary parts. For example, once a cosine is dis-
placed a little, the new function, which is typically neither odd
nor even, has both a real and an imaginary part. Moreover, it
can be expressed as a cosinusoidal amplitude spectrum, which
is appropriately phase-shifted (Fig. 11.12). Notice that when
the cosine is shifted ﬁ/\ into a sine, the relative phase difference
between the two component delta functions is again 7 rad.

Figure 11.13 displays in summary form a number of trans-
forms, mostly of harmonic functions. Observe how the func-
tions and transforms in (a) and (b) combine to produce the
function and its transform in (d). As a rule, each member of
the pair of 8-pulses in the frequency spectrum of a harmonic
function is located along the k-axis at a distance {from the ori-
gin equal to the fundamental angular spatial frequency of f(x).
Since any well-behaved periodic function can be expressed as
a Fourier series, it can also be represented as an array of pairs
of delta functions, each weighted appropriately and each a dis-
tance from the k-origin equal to the angular spatial frequency
of the particular harmonic contribution—the frequency spec-
trum of any periodic function will be discrete. One of the most
remarkable of the periodic functions is comb(x): as shown in
Fig. 11.14, its transform is also a comb function.

11.3 Optical Applications

11.3.1 Linear Systems

Fouricr techniques provide a particularly elegant framework
from which to evolve a description of the formation of images.
And for the most part, this will be the direction in which we
shall be moving, although some side excursions are unavoid-
able in order to develop the needed mathematics.
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Figure 11.13 Some functions and their transforms.
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Figure 11.14 (a) The comb function and its transform. (b) A shifted
comb function and its transform.

A key point in the analysis is the concept of a linear sys-
tem, which in turn is defined in terms of its input-output
relations. Suppose then that an input signal f(y, z) passing
through some optical system results in an output g(¥, Z). The
system is linear if:

1. multiplying f(y, z) by a constant a produces an output
ag(y, Z).

2. when the input is a weighted sum of two (or more) func-
tions, afi(y, z) + bfa(y, z), the output will similarly have
the form ag(Y, Z) + bg,(Y, Z), where fi(y, z) and f>(y, z)
generate g,(Y, Z) and g,(Y, Z) respectively.

Furthermore, a linear system will be space invariant if it pos-
sesses the property of stationarity; that is, in effect, changing
the position of the input merely changes the location of the
output without altering its functional form. The idea behind
much of this is that the output produced by an optical system
can be treated as a linear superposition of the outputs arising
from each of the individual points on the object. In fact, if we
symbolically represent the operation of the linear system as ¥{
}, the input and output can be written as

8(Y.2) = Z{f(y.2)} (11.46)

Using the sifting property of the 6-function [Eq. (11.36)], this

becomes

gy, zZ2)=% fff(y" )8y — y)8(z — z)dy' dz’

The integral expresses f(y, z) as a linear combination of ele-
mentary delta functions, each weighted by a number f(y', z').
It follows from the second linearity condition that the system
operator can equivalently act on each of the elementary func-
tions; thus

8(Y, Z)= fff(y’, 2)E{8(y — y)8(z' — Z)}dy’ dZ’
- (11.47)

The quantity £{8(y' — y)8(z' — z)} is the response of the
system (Eq. (11.46)] to a delta function located at the point
(¥', z') in the input space—it’s called the impulse response.
Apparently, if the impulse response of a system is known, the
output can be determined directly from the input by means of
Eq. (11.47). If the elementary sources are coherent, the input
and output signals will have to be electric fields; if incoherent,
they’ll be flux densities.

Consider the self-luminous and, therefore, incoherent
source depicted in Fig. 11.15. We can imagine that each point
on the object plane, 3, emits light that is processed by the
optical system. It emerges to form a spot on the focal or image
plane, X;. In addition, assume that the magnification between
object and image planes is one. The image will be life-sized

Figure 11.15 A lens system forming an image.



and erect, which makes it a little easier to deal with for the
time being. Notice that if the magnification (M7) was greater
than one, the image would be larger than the object. Conse-
quently, all of its structural details would be larger and
broader, so the spatial frequencies of the harmonic contribu-
tions that go into synthesizing the image would be lower than
those of the object. For example, an object that is a trans-
parency of a sinusoidally varying black and white linear
pattern (a sinusoidal amplitude grating) would be imaged
having a greater space between maxima and therefore a lower
spatial frequency. Besides that, the image irradiance would be
decreased by M%, because the image area would be increased
by a factor of M7.

If Io(y, z) is the irradiance distribution on the object plane,
an element dy dz located at (y, z) will emit a radiant flux of
Io(y, z) dy dz. Because of diffraction (and the possible presence
of aberrations), this light is smeared out into some sort of blur
spot over a finite area on the image plane rather than focused
to a point. The spread of radiant flux is described mathemati-
cally by the function &(y, z; ¥, Z), such that the flux density
arriving at the image point from dy dz is

ali(Y, Z) = 3(v, z; ¥, Z)lo(v, z) dydz ~ (11.48)
This is the patch of light in the image plane at (¥, Z), and
8(y, z; Y, Z) is known as the point-spread function. In other
words, when the irradiance Iy(y, z) over the source element
dydzis 1 W/m?, S(y, z; Y, Z)dy dz is the profile of the result-
ing irradiance distribution in the image plane. Because of the
incoherence of the source, the flux-density contributions from
each of its elements are additive, so

+x
(Y, Z)= jf Io(y, 2)8(y, 2; Y, Z) dy dz  (11.49)

In a “perfect,” diffraction-limited optical system having no
aberrations, 8(y, z, Y, Z) would correspond in shape to the dif-
fraction figure of a point source at (y, z). Evidently, if we set
the input equal to a 6-pulse centered at (g, o), then Iy(y, 7) =
Ad(y — y0)8(z — z,). Here the constant A of magnitude one
carries the needed units (i.e., irradiance times area). Thus

+c
I(Y, z) = Aff 8(y = Yo)8(z = 20)5(y, 2, ¥, Z) dy dz
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and so from the sifting property,
Ii(Y, Z) = AS(yo, 29, ¥, Z)

The point-spread function has a functional form identical to
that of the image generated by a 6-pulse input. It’s the impulse
response of the system [compare Eqs. (11.47) and (11.49)],
whether optically perfect or not. In a well-corrected system &,
apart from a multiplicative constant, is the Airy irradiance dis-
tribution function [Eq. (10.56)] centered on the Gaussian
image point (Fig. 11.16).

If the system is space invariant, a point-source input can be
moved about over the object plane without any effect other
than changing the location of its image. Equivalently, one can
say that the spread function is the same for any point (y, z). In
practice, however, the spread function will vary, but even so,
the image plane can be divided into small regions, over each
of which & doesn’t change appreciably. Thus if the object, and
therefore its image, is small enough, the system can be taken
to be space invariant. We can imagine a spread function sitting
at every Gaussian image point on 3, each multiplied by a dif-
ferent weighting factor Iy(y, z) but all of the same general
shape independent of (y, z). Since the magnification was set at
one, the coordinates of any object and conjugate image point
have the same magnitude.

If we were dealing with coherent light, we would have to
consider how the system acted upon an input that was again a
&-pulse, but this time one representing the field amplitude.

Optical system

Figure 11.16 The point-spread function: the irradiance produced
by the optical system with an input point source.
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Once more the resulting image would be described by a spread
function, although it would be an amplitude spread function.
For a diffraction-limited circular aperture, the amplitude
spread function looks like Fig. 10.235. And finally, we would
have to be concerned about the interference that would take
place on the image plane as the coherent fields interacted. By
contrast, with incoherent object points the process occurring
on the image plane is simply the summation of overlapping
irradiances, as depicted in one dimension in Fig. 11.17. Each
source point, with its own strength, corresponds to an appro-

1

S Y)

s Y) (c)

Y
(e)

Figure 11.17 Here (a) is convolved first with (b) to produce (¢) and
then with (d) to produce (e). The resulting pattern is the sum of all the
spread-out contributions as indicated by the dashed curve in (e).

$(Y-y) Y
Y ol (:z,b)
(Y -y) yi-
,L___y ‘
v
+—— z
z b
‘ = Y
Y=y a 5

Figure 11.18 The point-spread function.

priately scaled 6-pulse, and in the image plane each of these is
smeared out, via the spread function. The sum of all the over-
lapping contributions is the image irradiance.

What kind of dependence on the image and object space
variables will 5(y, z, ¥, Z) have? The spread function can only
depend on (v, z) as far as the location of its center is con-
cerned. Thus the value of &(y, z; Y, Z) anywhere on 3, merely
depends on the displacement at that location from the particu-
lar Gaussian image point (Y = y, Z = z) on which § is cen-
tered (Fig. 11.18). In other words,

Sy, Y, Z)=Y -y Z~-7) (11.50)

When the object point is on the central axis (y = 0, z = 0), the
Gaussian image point is as well, and the spread function is
then just 5(Y, Z), as depicted in Fig. 11.16. Under the circum-
stances of space invariance and incoherence,

]i(KZ):ff Iy, )Y — y,Z — z)dydz (11.5])

—oc

11.3.2 The Convolution Integral

Figure 11.17 shows a one-dimensional representation of the
distribution of point-source 8-functions that make up the
object. The corresponding image is essentially obtained by
“dealing out” an appropriately weighted point-spread function
to the location of each image point on X,; and then adding up all
the contributions at each point along Y. This dealing out of one
function to every point of (and weighted by) another function
is a process known as convelution, and we say that one func-



(X ~ x,)

SO(X) FOA(X,)dx

FOA(X,) dx

tion Iy(y), is convolved with another, s(y, Y), or vice versa.

This procedure can be carried out in two dimensions as
well, and that’s essentially what is being done by Eq. (11.51),
the so-called convolution integral. The corresponding one-
dimensional expression describing the convolution of two
functions f(x) and A(x),

g(X) = j FOORX — x) dx (11.52)

is easier to appreciate. In Fig. 11.17 one of the two functions
was a group of 8-pulses, and the convolution operation was
particularly easy to visualize. Still, we can imagine any func-
tion to be composed of a “densely packed” continuum of §-
pulses and treat it in much the same fashion. Let us now
examine in some detail exactly how the integral of Eq. (11.52)
mathematically manages to perform the convolution. The
essential features of the process are illustrated in Fig. 11.19.
The resulting signal g(X;,), at some point X, in the output
space, is a linear superposition of all the individual overlap-
ping contributions that exist at X;. In other words, each source
element dx yields a signal of a particular strength f(x) dx,
which is then smeared out by the system into a region centered
about the Gaussian image point (X = x). The output at X is
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T~ F0hO)

f(xz)h(x ~ X3)

Figure 11.19 The overlapping
X2 of weighted spread functions.

then dg(X;) = f(x)h( X; — x) dx. The integral sums up all of
these contributions from each source element. Of course the
elements more remote from a given point on ; contribute less
because the spread function generally drops off with displace-
ment. Thus we can imagine f(x) to be a one-dimensional irra-
diance distribution, such as a series of vertical bands, as in Fig.
11.20. If the one-dimensional line-spread function, 4(X —
x), is that of Fig. 11.20d, the resulting image will simply be a
somewhat blurred version of the input (Fig. 11.20¢).

Let’s now examine the convolution a bit more as a mathe-
matical entity. Actually it’s a rather subtle beast, performing a
process that might certainly not be obvious at first glance, so
let’s approach it from a slightly different viewpoint. Accord-
ingly, we will have two ways of thinking about the convolu-
tion integral, and we shall show that they are equivalent.

Suppose A(x) looks like the asymmetrical function in Fig.
11.21a. Then h(—x) appears in Fig. 11.215, and its shifted
form hA(X — xj is shown in (¢). The convolution of f(x)
[depicted in (d)] and k(x) is g( X), as given by Eq. (11.52). This
is often written more concisely as f(x} ® A(x). The integral
simply says that the area under the product function f(x)h(X —
x) for all x is g(X). Evidently, the product is nonzero only over
the range d wherein A(X — x) is nonzero, that is, where the two
curves overlap (Fig. 11.21e). At a particular point X, in the
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Figure 11.20 The irradiance distribution is converted to a function f(x)
shown in (a). This is convolved with a 8-function (b) to yield a duplicate
of f(x). By contrast, convolving f(x) with the spread function h, in (d)
yields a smoothed-out curve represented by gx(x) in ().

N

X

output space, the area under the product f(x)h(X; — x) is
g(X;). This fairly direct interpretation can be related back to
the physically more pleasing view of the integral in terms of
overlapping point contributions, as depicted previously in Fig.
11.19. Remember that there we said that each source element
was smeared out in a blur spot on the image plane having the
shape of the spread function. Now suppose we take the direct
approach and wish to compute the product area of Fig. 11.21e
at X, that is, g( X;). A differential element dx centered on any
point in the region of overlap (Fig. 11.224), say x;, will con-
tribute an amount f(x;)h(X,; — x;) dx to the area. This same
differential element will make an identical contribution when
viewed in the overlapping spread-function scheme. To see
this, examine (b) and (¢) in Fig. 11.22, which are now drawn

/FXL
0 X

(a)

//‘Kﬂ
0

hX —

(b)

x)

f(x)

()

e

(d)

h(X — x)

AP

X

L_ 1 (e)
d——

Figure 11.21 The geometry of the convolution process in the object

coordinates.
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Figure 11.22 The geometry of the convolution process in the image

coordinates. 9(X)

in the output space. The latter shows the spread function “cen- N B
tered” at X = x;. A source element dx, in this case located on PRI
the object at x;, generates a smeared-out signal proportional to

flxp)h(X — x;), as in (d), where f(x;) is just a number. The Figure 11.23 Conyqlution of two square pulses. Thg fact that we rep-
piece of this signal that exists at X, is f(x)h(X; — x;) dx, resented f(x) by a finite number of delta functions (viz., 7) accounts for
which indeed is identical to the contribution made by dx at x; the steps in g(X)

in(a). Similarly, each differential element of the product area

(atany x = x") in Fig. 11.224 has its counterpart in a curve like
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that of (d) but “centered” on a new point (X = x'). Points
beyond x = x, make no contribution because they are not in
the overlap region of (a) and, equivalently, because they are
too far from X, for the smear to reach it, as shown in (e).

If the functions being convolved are simple enough, g(X)
can be determined roughly without any calculations at all. The
convolution of two identical square pulses is illustrated, from
both of the viewpoints discussed above, in Figs. 11.23 and
11.24. In Fig. 11.23 each impulse constituting f(x) is spread
out into a square pulse and summed. In Fig. 11.24 the overlap-
ping area, as A varies, is plotted against X. In both instances
the result is a triangular pulse. Incidentally, observe that
(f® h) = (h ® f), as can be seen by a change of variable
(x' = X — x)in Eq. (11.52), being careful with the limits (see
Problem 11.15).

h(X — x) ® f(x)
i R N N L B
[ SR S — (IR —
I L )
Xy

g(X)

X, X, X, Xo X, X, X,

Figure 11.24 Convolution of two square pulses.

Figure 11.25 illustrates the convolution of two functions
Io(y, z) and (v, z) in two dimensions, as given by Eq. (11.51).
Here the volume under the product curve Io(y, z)5(Y — v,
Z — z), that is, the region of overlap, equals I,(Y, Z) at (¥, Z);
see Problem 11.16.

The Convolution Theorem

Suppose we have two functions f(x) and h(x) with Fourier
transforms F{ f(x)} = F(k) and F{h(x)} = H(k), respectively.
The convolution theorem states thatif g = f & A,

Fgt = Ffon = Ff1 Fh} (11.53)

or G(k) = F(Kk)H(K) (11.54)

where F{g} = G(k). The proof is quite straightforward:

+ oo

F{f®h} = f g(X)e* ¥ dx
= f e"kx[ f Floh(X — x)dx] dx

+ o +oe
G(k) = f f X — x)e™¥dX | f(x) dx

—oc —

Thus

If we put w = X — x in the inner integral, then dX = dw and

+% +%
G(k) = f f(x)e”k)‘dxj. h(w)e™ dw

—x

Hence

G(k) = F(k)H(k)

which verifies the theorem. As an example of its application,
refer to Fig. 11.26. Since the convolution of two identical
square pulses (f ® ) is a triangular pulse (g), the product of
their transforms (Fig. 7.17) must be the transform of g,
namely,

F{g} = [d sinc (kd/2)]? (11.55)

As an additional example, convolve a square pulse with the
two &-functions of Fig. 11.11. The transform of the resulting
double pulse (Fig. 11.27) is again the product of the individual
transforms.
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Figure 11.25 Convolution in two dimensions.
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Figure 11.26 An illustration of the convolution theorem. Figure 11.27 An illustration of the convolution theorem.
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-

#{gt=F (fh} F{h}
G(k) = H(k)
L A
~k, 0 +hy k 0

The k-space counterpart of Eq. (11.53), namely. the fre-
quency convolution theorem, is given by

L st e oin)

27

F{f-h} = (11.56)
That is, the transform of the product is the convolution of the
transforms.

Figure 11.28 makes the point rather nicely. Here an infi-
nitely long cosine, f(x), is multiplied by a rectangular pulse,
h(x), which truncates it into a short oscillatory wavetrain, g(x).
The transform of f(x) is a pair of delta functions, the transform
of the rectangular pulse is a sinc function, and the convolution
of the two is the transform of g(x). Compare this result with
that of Eq. (7.60).

Transform of the Gaussian Wave Packet

As a further example of the usefulness of the convolution the-
orem, let’s evaluate the Fourier transform of a pulse of light in
the configuration of the wave packet of Fig. 11.29. Taking a
rather general approach, notice that since a one-dimensional
harmonic wave has the form

E(X, I) — E()e’ i(kyx -wr)

one nced only modulate the amplitude to get a pulse of the
desired structure. Assuming the wave’s profile to be indepen-

Figure 11.28

An example of the
frequency convolution
theorem.

ky

<
kel
x>~

dent of time, we can write it as
E(x,0) = f(x)e **

-ikyx

Now, to determine F{f(x)e } evaluate

e
f Fixje *ee™ dx

(11.57)
Letting k&’ = k — k,, we get
+ 2
F(k') = f flx)e®dx = Fk — k) (11.58)

F{E(x, W)}

a
[?~ax1e—xkox |
g B n

| k
J U V/V’ 0 lko
-

Figure 11.29 A Gaussian wave packet and its transform.
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In other words, if F(k) = F{f(x)}, then F(k — ko) =
F{f(x)e”*}. For the specific case of a Gaussian envelope
[Eq. (11.11)], as in the figure, f(x}) = Va/me “*, that is.

E(x,0) = Vajme e o (11.59)

From the foregoing discussion and Eq. (11.12), it follows that

F{E(x,0)} = ¢~k H0)"/4a (11.60)
In quite a different way, the transform can be determined from
Eq. (11.56). The expression E(x, 0) is now viewed as the prod-
uct of the two functions f(x) = Va/m exp (—ax?) and h(x) =
exp (—ikyx). One way to evaluate F{h} is to set f(x) = 11in Eq.
(11.57). This yields the transform of 1 with k replaced by & —
ky. Since F{1} = 2mw8(k) (see Problem 11.4), we have
Fle ) = 28(k — k). Thus F{E(x, 0)} is 1/27 times the
convolution of 278(k — k), with the Gaussian e ©/%4 cen-
tered on zero. The result* is once again a Gaussian centered on
ko, namely, e =%~ ko*/da,

11.3.3 Fourier Methods in Diffraction Theory

Fraunhofer Diffraction

Fourier-transform theory provides a particularly beautiful
insight into the mechanism of Fraunhofer diffraction. Let’s go
back to Eq. (10.41), rewritten as

&, /@I kR
A

= eik(Yy—i—Zz)/R dy d:

EY.Z) = (11.61)

Aperture

This formula refers to Fig. 10.18, which depicts an arbitrary

*We should actually have used the real part of exp (-ikox) to start with
in this derivation, since the transform of the complex exponential is dif-
ferent from the transform of cos kox and taking the real part afterward
is insufficient. This is the same sort of difficulty one always encounters
when forming products of complex exponentials. The final answer [Eq.
(11.60)] should, in fact, contain an additional exp [~k + ko)?/4a] term,
as well as a multiplicative constant of 4. This second term is usually
negligible in comparison, however. Even so, had we used exp (+ikoX)
to start with [Eq. (11.59)], only the negligible term would have resuited!
Using the complex exponential to represent the sine or cosine in this
fashion is rigorously incorrect, albeit pragmatically common practice.
As a short-cut, it should be indulged in only with the greatest caution!
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diffracting aperture in the yz-plane upon which is incident a
monochromatic plane wave. The quantity R is the distance
from the center of the aperture to the output point where the
field is E(Y, Z). The source strength per unit area of the aper-
ture is denoted by £4. We are talking about electric fields that
are of course time-varying; the term exp i(wt — kR) just relates
the phase of the net disturbance at the point (Y. Z) to that at the
center of the aperture. The 1/R corresponds to the dropoff of
field amplitude with distance from the aperture. The phase
term in front of the integral is of little present concern. since
we are interested in the relative amplitude distribution of the
field, and it doesn’t much matter what the resultant phase is at
any particular output point. Thus if we limit ourselves to a
small region of output space over which R is essentially con-
stant, everything in front of the integral, with the exception of
&4. can be lumped into a single constant.

The &4 has thus far been assumed to be invariant over the
aperture, but that certainly need not be the case. Indeed, if the
aperture were filled with a bumpy piece of dirty glass, the field
emanating from each area element dy dz could differ in both
amplitude and phase. There would be nonuniform absorption,
as well as a position-dependent optical path length through the
glass, which would certainly affect the diffracted field distrib-
ution. The variations in &,, as well as the multiplicative con-
stant, can be combined into a single complex quantity

Aly.z) = Aoy, 7)€ (11.62)

which we call the aperture function. The amplitude of the
field over the aperture is described by sdo(y, z), while the
point-to-point phase variation is represented by exp [id(y, 2)].
Accordingly, 9i(y, z) dy dz is proportional to the diffracted
field emanating from the differential source element dy dz.
Consolidating this much, we can reformulate Eq. (11.61) more
generally as

+ e
EY.Z) = j j (v, )e™ IR gy g (11.63)

The limits on the integral can be extended to = because the
aperture function is nonzero only over the region of the aper-
ture.

It might be helpful to envision dE(Y. Z) at a given point P
as if it were a plane wave propagating in the direction of k as
in Fig. 11.30 and having an amplitude determined by
(v, z) dv dz. To underscore the similarity between Eq.
(11.63) and Eq. (11.14), let’s define the spatial frequencies ky
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Figure 11.30 A bit of geometry.

and kz as

ky =kY/R = ksin¢ = k cos B (11.64)

and k;=kZ/R =ksin 0 =kcosy (11.65)

For each point on the image plane, there is a corresponding
spatial frequency. The diffracted field can now be written as

+0
E(Ky, kz) = J J A(y,2)e TR dy dz (11.66)

and we’ve arrived at the key point: the field distribution in the
Fraunhofer diffraction pattern is the Fourier transform of
the field distribution across the aperture (i.e., the aperture

Junction). Symbolically, this is written as
E(ky, kz) = F{A(y,2)} (11.67)

The field distribution in the image plane is the spatial-fre-
quency spectrum of the aperture function. The inverse trans-
form is then

+oc
1 ,
Ay, z) = o= J f E(ky, ke R D gk, dk,  (11.68)
w

that is,

A(y,z) = F~{E(ky, kz)} (11.69)
As we have seen time and again, the more localized the signal,
the more spread out is its transform—the same is true in two
dimensions. The smaller the diffracting aperture, the larger the
angular spread of the diffracted beam or, equivalently, the
larger the spatial frequency bandwidth.

There is a minor issue that should be mentioned here. If we
actually try to observe a Fraunhofer pattern on a distant screen
(without a lens), what we get will only be an approximation;
the true Fraunhofer pattern is formed in parallel light that
doesn’t converge at any finite distance. That doesn’t generally
cause any grief because what we do observe is the irradiance,
and that is indistinguishable from the ideal distribution at great
distances. Still, at any distant, but finite, location the diffracted
electric-field distribution will differ in phase very slightly
from the Fourier transform of the aperture function. Since we
cannot even measure the electric field, the problem is not like-
ly to be a practical one and we shall henceforth simply over-
look it.

The Single Slit

As an illustration of the method, consider the long slit in the y-
direction of Fig. 10.11, illuminated by a plane wave. Assum-
ing that there are no phase or amplitude variations across the
aperture, (v, z) has the form of a square pulse (Fig. 7.23):

o _ Jso when|z| = b/2
2 =10 when |z| > b/2

where o, is no longer a function of y and z. If we take it as a
one-dimensional problem,

+b/2
ezkzz dz

E(k;) = 95{3&(2)} = v‘ﬁoj

z=—b/2
E(kz) = ‘ﬁob sinc kzb/z

With kz = k sin 6, this is precisely the form derived in Section
10.2.1. The far-field diffraction pattern of a rectangular aper-
ture (Section 10.2.4) is the two-dimensional counterpart of the
slit. With #(y, z) again equal to s, over the aperture (Fig.
10.19),



E(ky, kZ) = 0‘{&4()3 Z)}

+b/2 +a/2
— f J &Qoei(kyy—i— kzz)dy dz
y=—b/2 Jz=—~a/2

. bkY | akZ
E(ky, kz) = Aqba sinc R sinc SR

hence,

justas in Eq. (10.42), where ba is the area of the hole.

Young’s Experiment: The Double Slit

In our first treatment of Young’s Experiment (Section 9.3), we
took the slits to be infinitesimally wide. The aperture function
was then two symmetrical §-pulses, and the corresponding
idealized field amplitude in the diffraction pattern was the
Fourier transform, namely, a cosine function. Squared, this
yields the familiar cosine-squared irradiance distribution of
Fig. 9.9. More realistically, each aperture actually has some
finite shape, and the real diffraction pattern will never be quite
so simple. Figure 11.31 shows the case in which the holes are
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actual slits. The aperture function, g(x), is obtained by con-
volving the &-function spikes, /(x), that locate each slit with
the rectangular pulse, f(x), that corresponds to the particular
opening. From the convolution theorem, the product of the
transforms is the modulated cosine amplitude function repre-
senting the diffracted field as it appears on the image plane.
Squaring that would produce the anticipated double-slit irradi-
ance distribution shown in Fig. 10.14. The one-dimensional
transform curves are plotted against k, but that’s equivalent to
plotting against image-space variables by means of Eq.
(11.64). (The same reasoning applied to circular apertures
yields the fringe pattern of Fig. 12.2.)

Three Slits

Looking at Fig. 11.13d, it should be clear that the transform of
the array of three 5-functions in the diagram will generate a
cosine that is raised by an amount proportional to the zero-fre-
quency term, that is, the 8-function at the origin. When that
delta function has twice the amplitude of the other two, the
cosine is totally positive. Now suppose we have three ideally
narrow parallel slits uniformly illuminated. The aperture func-

f(x ® h(x) = g(x) Figure 11.31 An illustration of
the convolution theorem.
1
il l_l |_‘|
I_—l ﬁ 2 i
x x l | 1 x
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(a) Aperture function (b) Electric field

ftx) F(k)

(c) Irradiance

F2(k)

o\

Figure 11.32 The Fourier transform of three equal 8-functions representing three slits.

tion corresponds to Fig. 11.324, where the central 6-function
is half its previous size. Accordingly, the cosine transform will
drop one quarter of the way down, as indicated in Fig. 11.325.
This corresponds to the diffracted electric-field amplitude, and
its square, Fig. 11.32c¢, is the three-slit irradiance pattern.

Apodization

The term apodization derives from the Greek «, 1o take away,
and modoo, meaning foot. It refers to the process of suppress-
ing the secondary maxima (side lobes) or feet of a diffraction
pattern. In the case of a circular pupil (Section 10.2.5), the dif-
fraction pattern is a central spot surrounded by concentric
rings. The first ring has a flux density of 1.75% that of the cen-
tral peak—it’s small, but it can be troublesome. About 16% of
the light incident on the image plane is distributed in the ring
system. The presence of these side lobes can diminish the
resolving power of an optical system to a point where apodiza-
tion is called for, as is often the case in astronomy and spec-
troscopy. For example, the star Sirius, which appears as the
brightest star in the sky (it’s in the constellation Canis
Major—the big dog), is actually one of a binary system. It’s
accompanied by a faint white dwarf as they both orbit about
their mutual center of mass. Because of the tremendous differ-
ence in brightness (10* to 1), the image of the faint compan-
ion, as viewed with a telescope, is generally completely
obscured by the side lobes of the diffraction pattern of the
main star.

Apodization can be accomplished in several ways, for
example, by altering the shape of the aperture or its transmis-

sion characteristics.* We already know from Eq. (11.66) that
the diffracted field distribution is the transform of «d(y, z).
Thus we could effect a change in the side lobes by altering
Aoly, z) or ¢(y, z). Perhaps the simplest approach is the one in
which only sdofy, z) is manipulated. This can be accomplished
physically by covering the aperture with a suitably coated fla
glass plate (or coating the objective lens itself). Suppose that
the coating becomes increasingly opaque as it goes radially
out from the center (in the yz-plane) toward the edges of a cir-
cular pupil. The transmitted field will correspondingly
decrease off-axis until it is made to become negligible at the
periphery of the aperture. In particular, imagine that this
dropoff in amplitude follows a Gaussian curve. Then 5y, )
is a Gaussian function, as is its transform E(Y, Z}), and conse-
quently the ring system vanishes. Even though the central
peak is broadened, the side lobes are indeed suppressed (Fig.
11.33).

Another rather heuristic but appealing way to look at the
process is to realize that the higher spatial frequency contribu-
tions go into sharpening up the details of the function being
synthesized. As we saw earlier in one dimension (Fig. 7.29),
the high frequencies serve to fill in the corners of the square
pulse. In the same way, since si(y, z) = F ~ {E(ky, kz)}, sharp
edges on the aperture necessitate the presence of appreciable
contributions of high spatial frequency in the diffracted field.
It follows that making q(y, z) fall off gradually will reduce

*For an extensive treatment of the subject, see P, Jacquinot and B.
Roizen-Dossier, “Apodization,” in Vol. Il of Progress in Optics.
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Figure 11.33 An Airy pattern compared with a Gaussian.

these high frequencies, which in turn is manifest in a suppres-
sion of the side lobes.

Apodization is one aspect of the more encompassing tech-
nique of spatial filtering, which is discussed in an extensive
yet nonmathematical treatment in Chapter 13.

The Array Theorem

Generalizing some of our previous ideas to two dimensions,
imagine that we have a screen containing N identical holes, as
in Fig. 11.34. In each aperture, at the same relative position,
we locate a point Oy, Os,..., Oy at (y1, 20), (Y2, 22)se.1,
(ym zw), respectively. Each of these, in turn, fixes the origin of
alocal coordinate system (y', z'). Thus a point (y’, ') in the
local frame of the jth aperture has coordinates (y; + y', z; + 2')
inthe (v, z)-system. Under coherent monochromatic illumina-
tion, the resulting Fraunhofer diffraction field E(Y, Z) at some
point P on the image plane will be a superposition of the indi-
vidual fields at P arising from each separate aperture; in other
words,

E

.
N

E(XZ):Z Jf &Ql(y/,Z/)eik[Y(vj—i—y’)+Z(:j+z')]/Rdy/ dZ/
=
B (11.70)

~+ ¢
v EYZ= ff sy’ 2 )e TRy gy

N
X Z eik()’.\jﬁrsz)/R
=1

(11.71)
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where d,(y’, z') is the individual aperture function applicable
to each hole. This can be recast, using Eqs. (11.64) and
(11.65), as

+ e
E(ky, kz) = f f dyly’ 2')e" ke TR gyt gt

N
X Z ef(ky."j)ef(kzlj)
=1

(11.72)

Notice that the integral is the Fourier transform of the individ-
ual aperture function, while the sum is the transform [Eq.

(11.42)] of an array of delta functions
As= D 8(y — y)d(z — z,) (11.73)

J

Inasmuch as E(ky, k) itself is the transform F{«d(y, z)} of the
total aperture function for the entire array, we have
Flol(y,2)} = FA(y' 2)} F{As) (11.74)
This equation is a statement of the array theorem, which says
that the field distribution in the Fraunhofer diffraction pat-
tern of an array of similarly oriented identical apertures
equals the Fourier transform of an individual aperture func-
tion (i.e., its diffracted field distribution) multiplied by the
pattern that would result from a set of point sources arrayed
in the same configuration (which is the transform of As).

~N

P

\

P

!

|

|
Yy

Figure 11.34 Multiple-aperture configuration.
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This can be seen from a slightly different point of view.
The total aperture function may be formed by convolving the
tndividual aperture function with an appropriate array of delta
functions, each sitting at one of the coordinate origins (v, 7)),
(¥>, 2>), and so on. Hence

Ay.z) = Ay’ 2) ® Ag (11.75)
whereupon the array theorem follows directly from the convo-
lution theorem [Eq. (11.53)].

As a simple example, imagine that we again have Young’s
Experiment with two slits along the y-direction, of width b and
separation a. The individual aperture function for each slit is a
step function,

Qg , ~9i/('; WhCI’l = h/2
ETZY 00 when 7| > b2

’

and so

F{A(z')} = Apb sinc kzb/2
With the slits located at z = *a/2,

As=06(z —a/2) + 8(z +a/2)
and from Eq. (11.43)

F{As} = 2cos kza/2

kb k
E(kz) = 2 b sinc (%) cos (%)

which is the same conclusion arrived at earlier (Fig. 11.31).
The irradiance pattern is a set of cosine-squared interference
fringes modulated by a sinc-squared diffraction envelope.

Thus

11.3.4 Spectra and Correlation

Parseval’'s Formula

Suppose that f(x) is a pulse of finite extent, and F(k) is its
Fourier transform |Eq. (11.5)]. Thinking back to Section 7.8,
we recognize the function F(k) as the amplitude of the spatial
frequency spectrum of f(x). And F(k) dk then connotes the
amplitude of the contributions to the pulse within the frequen-

cy range from kto k + dk. Hence it seems that | F{ k)| serves as
a spectral amplitude density. and its square, | F(k)|*, should be
proportional to the cnergy per unit spatial frequency interval
Stmilarly, in the time domain, if f() is a radiated electric field,
|f(1)| is proportional to the radiant flux or power, and the total
emitted energy is proportional to [ |f(1)]*dr. With F(w) =
F{f(1)} it appears that | F(w)|* must be a measure of the radi-
ated energy per unit temporal frequency interval. To be a bit
more precise, let’s evaluate [ 'Z| f(1)|* dt in terms of the appro-
priate Fourier transforms. Inasmuch as |f(1)|* = f(1)f*(1) =

F) 1 F HF )%,

(== oo +4oc
f Lfn) dr = f f(1) 1 f Fo(w)e "™ dw | dt
—o —o 27 J-=

Interchanging the order of integration, we obtain

+c 1 +oo + oo
f Iﬂwl:d’:T f F¥(w) f()e dr | do

w

and so

fm If(r)lzdz=51;fw [Flo)de (1176

where ]F((u)|2 = F*(w)F(w). This is Parseval’s formula. As
expected, the total energy is proportional to the area under the
|F(w)|? curve, and consequently |F(w)|* is sometimes called
the power spectrum or spectral energy distribution. The cor-
responding formula for the space domain is

o + 0
, 1
f lf(x){“dx—z—f | F(k)|*> dk (11.77)
,7, i

The Lorentzian Profile

As an indication of the manner in which these ideas are
applied in practice, consider the damped harmonic wave f{r) at
x = O depicted in Fig. 11.35. Here

fromt = —ototr =10
fromr=0tot = +x

‘ { 0
1= 27
1o Joe i COS Wyl

The negative exponential dependence arises, quite generally,
whenever the rate-of-change of a quantity depends on its
instantancous value. In this case, we might suppose that the
power radiated by an atom varies as (¢~7)'/2 In any event, 7
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Figure 11.35 A damped harmonic wave.

isknown as the time constant of the oscillation, and 7! = vis

the damping constant. The transform of f(z) is
Flw) = f (foe™"? cos wot) €™ dt (11.78)
0

The evaluation of this integral is explored in the problems.
One finds on performing the calculation that

-1 -1
1 1
Flw) = f?o[;_ i(w + wo):l + %[;— i(w — wo)]

When f(¢) is the radiated field of an atom, 7 denotes the /ife-
time of the excited state (from around 1.0 ns to 10 ns). Now if
we form the power spectrum F(w)F*(w), it will be composed
of two peaks centered on = w, and thus separated by 2w,. At
optical frequencies where wq >> v, these will be both narrow
and widely spaced, with essentially no overlap. The shape of
these peaks is determined by the transform of the modulation
envelope in Fig. 11.35, that is, a negative exponential. The
location of the peaks is fixed by the frequency of the modulat-
ed cosine wave, and the fact that there are two such peaks is a
reflection of the spectrum of the cosine in this symmetrical
frequency representation (Section 7.8). To determine the
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observable spectrum from F{wF*(w), we need only consider
the positive frequency term, namely,

_ 5 y:/4

¥ (@ = w)’ + ¥'/4
This has a maximum value offé/y2 at w = wg, as shown in
Fig. 11.36. At the half-power points (v — wg) = *7v/2,
\F(w)|* = f3/2y?, which is half its maximum value. The
width of the spectral line between these points is equal to v.

The curve given by Eq. (11.79) is known as the resonance
or Lorentz profile. The frequency bandwidth arising from the
finite duration of the excited state is called the natural
linewidth.

If the radiating atom suffers a collision, it can lose energy
and thereby further shorten the duration of emission. The fre-
quency bandwidth increases in the process, which is known as
Lorentz broadening. Here again, the spectrum is found to
have a Lorentz profile. Furthermore, because of the random
thermal motion of the atoms in a gas, the frequency band-
width will be increased via the Doppler effect. Doppler
broadening, as it is called, results in a Gaussian spectrum
{Section 7.10). The Gaussian drops more slowly in the imme-
diate vicinity of wg and then more quickly away from it than
does the Lorentzian profile. These effects can be combined
mathematically to yield a single spectrum by convolving the
Gaussian and Lorentzian functions. In a low-pressure gaseous
discharge. the Gaussian profile is by far the wider and gener-
ally predominates.

|Flw)]? (11.79)

Autocorrelation and Cross-Correlation

Let’s now go back to the derivation of Parseval’s formula and
follow it through again, this time with a slight modification.

0 Wo

Figure 11.36 The resonance or Lorentz profile.
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We wish to evaluate [*Z f(t + 7)f*(t) dt, using much the
same approach as before. Thus, if F(w) = F{f(1)},

f f(t + 1)f*(t) drzf fit+ 1)

—+ o0

1 .

X ———j F*(w)e™ ™ dw | dt
27T —oc

(11.80)
Changing the order of integration, we obtain

+ 00 400
1 )
—f F*(w) f f(t + 1) dt | dow
277' —o0 —o

T
= —f F*(w)F{f(t + 7)}dw
27T —oc

To evaluate the transform within the last integral, notice that

+00
1 .
ftt +1)= %= f Flw)e """ dw
27T -
by a change of variable in Eq. (11.9). Hence,
ft +1) = F {F(w)e 7}

so as discussed earlier, Z{f(t + 7)} = F(w)e "7, Eq. (11.80)
becomes

f f(t +7)f*(t) dt = %f F*(w)F(w)e " dw
(11.81)

and both sides are functions of the parameter 7. The left-hand
side of this formula is said to be the autocorrelation of f(1),
denoted by

+00

c(t) = f St +7)f*(t) dt (11.82)
which is often written symbolically as f(t) O f*(z). If we take
the transform of both sides, Eq. (11.81) then becomes

Fleg(m)} = |Flw) (11.83)
This is a form of the Wiener—Khintchine theorem. It allows
for determination of the spectrum by way of the autocorrela-
tion of the generating function. The definition of cg(7) applies
when the function has finite energy. When it doesn’t, things

will have to be changed slightly. The integral can also be
restated as

c(7) =f f)f*(t — 1) dt (11.84)

—o0

by a simple change of variable (r + 7 to ¢). Similarly, the
cross-correlation of the functions f(7) and A(z) is defined as

+00

c(T) = f FH(Oh(t + 1) dt (11.85)

Correlation analysis is essentially a means for comparing
two signals in order to determine the degree of similarity
between them. In autocorrelation the original function is dis-
placed in time by an amount 7, the product of the displaced
and undisplaced versions is formed, and the area under that
product (corresponding to the degree of overlap) is computed
by means of the integral. The autocorrelation function, ¢(7),
provides the result that will be obtained in such a process for
all values of 7. One reason for doing such a thing, for example,
is to extract a signal from a background of random noise.

To see how the business works step by step, let’s take the
autocorrelation of a simple function, such as A sin(wt + ¢),
shown in Fig. 11.37. In each part of the diagram the function
is shifted by a value of 7, the product f(1)-f(t + 1) is formed,
and then the area under that product function is computed and
plotted in part (e). Notice that the process is indifferent to the
value of e. The final result is cg(7) = 3A> cos wr, where this
function unfolds through one cycle as 7 goes through 27, so it
has the same frequency as f(z). Accordingly, if we had a
process for generating the autocorrelation, we could recon-
struct from that both the original amplitude A and the angular
frequency w.

Assuming the functions to be real, we can rewrite cy,(7) as

+ 00
Crn(T) = f f(th(t + 1) dt (11.86)
which is obviously similar to the expression for the convolu-
tion of f(t) and h(t). Equation (11.86) is written symbolically
as c(7) = f(t) © h(1). Indeed, if either f(t) or A(t) is even, then
f(1) ® h(t) = f(t) © h(t), as we shall see by example presently.
Recall that the convolution flips one of the functions over and
then sums up the overlap area (Fig. 11.21), that is, the area
under the product curve. In contrast, the correlation sums up
the overlap without flipping the function, and thus if the func-
tion is even, f(t) = f(—1), itisn’t changed by being flipped (or
folded about the symmetry axis), and the two integrands are
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identical. For this to obtain, either function must be even, since
fit) ® h(t) = h(t) ® f(t). The autocorrelation of a square pulse
is therefore equal to the convolution of the pulse with itself,
which yields a triangular signal, as in Fig. 11.24. This same
conclusion follows from Eq. (11.83) and Fig. 11.26. The trans-
form of a square pulse is a sinc function, so that the power
spectrum varies as sinc” u. The inverse transform of |F(w)|*,
that is, FYsinc? u}, is csr(7), which as we have seen, is again
atriangular pulse (Fig. 11.38).

Itis clearly possible for a function to have infinite energy
[Eq. (11.76)] over an integration ranging from —o to + and
yetstill have a finite average power

1 +T
: 2
}1111302 f—r Lf(0)l* dr

m (d) 2= T

(c)

Figure 11.37 The autocorrelation of a sine function.

Accordingly, we will define a correlation that is divided by the
integration interval:

+7T
1
= lim — + 11.
Cp(T) }1_1;113c 2Tf‘r f(Hh(t +7)dt (11.87)
For example, if f(1) = A (i.e., a constant), its autocorrelation
1 +T
Cy(t) =lim — A)A) dr = A®
#(T) A 2Tf—7 (A)A)

and the power spectrum, which is the transform of the auto-
correlation, becomes
FAC(1)} = A278(w)

a single impulse at the origin (w = 0), which is sometimes
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fx)

¢ =f(x)0f(x)

o>

F{fx)} = Fk)

T X

referred to as a de-term. Notice that Cr,(7) can be thought of as
the time average of a product of two functions, one of which is
shifted by an interval 7. In the next chapter, expressions of the
form (f*(t)h(r + 7)) arise as coherence functions relating elec-
tric fields. They are also quite useful in the analysis of noise
problems, for example, film grain noise.

We can obviously reconstruct a function from its trans-
form, but once the transform is squared, as in Eq. (11.83), we
lose information about the signs of the frequency contribu-
tions, that is, their relative phases. In the same way, the auto-
correlation of a function contains no phase information and is
not unique. To see this more clearly, imagine we have a num-
ber of harmonic functions of different amplitude and frequen-
cy. If their relative phases are altered, the resultant function
changes, as does its transform, but in all cases the amount of
energy available at any frequency must be constant. Thus,
whatever the form of the resultant profile, its autocorrelation is
unaltered. It is left as a problem to show analytically that when
f(t) = Asin(wt + &), Ci(1) = (A*/2) cos wr, which confirms
the loss of phase information.

Figure 11.39 shows a means of optically correlating two
two-dimensional spatial functions. Each of these signals is
represented as a point-by-point variation in the irradiance
transmission property of a photographic transparency (7, and
T5,). For relatively simple signals opaque screens with appro-
priate apertures could serve instead of transparencies (e.g., for

k
[F(k)|?
Figure 11.38 The square of the Fourier
transform of the rectangular pulse f(x)
(i.e., [F(k)|?) equals the Fourier transform
k of the autocorrelation of f(x).

square pulses).* The irradiance at any point P on the image is
due to a focused bundle of parallel rays that has traversed both
transparencies. The coordinates of P, (61, ¢f ), are fixed by the
orientation of the ray bundle, that is, the angles 8 and ¢. If the
transparencies are identical, a ray passing through any point

Broad
uniform
source

L

Figure 11.39 Optical correlation of two functions.

l

*See L. S. G. Kovasznay and A. Arman, Rev. Sci. Instr. 28, 793 (1958),
and D. McLachlan, Jr., J. Opt. Soc. Am. 52, 454 (1962).



(x, y) on the first film with a transmittance g(x, y) will pass
through a corresponding point (x + X, y + Y) on the second
film where the transmittance is g(x + X, y + Y). The shifts tn
coordinate are given by X = ¢Band Y = €p, where € is the
separation between the transparencies. The irradiance at P is
therefore proportional to the autocorrelation of g(x, y), that is,

+ 0
X ¥Y) = ff g(x.y)g(x + X,y + Z) dx dy
o (11.88)

and the entire flux-density pattern is called a correlogram. If
the transparencies are different, the image is of course repre-
sentative of the cross-correlation of the functions. Similarly, if
one of the transparencies is rotated by 180° with respect to the
other, the convolution can be obtained (see Fig. 11.25).
Before moving on, let’s make sure that we actually do
have a good physical feeling for the operation performed by
the correlation functions. Accordingly, suppose we have a
random noise-like signal (e.g., a fluctuating irradiance at a
point in space or a time-varying voltage or electric field), as in
Fig. 11.40a. The autocorrelation of f(z) in effect compares the
function with its value at some other time, f(r + 7). For exam-
ple, with 7 = O the integral runs along the signal in time, sum-
ming up and averaging the product of f(r) and f(¢r + 7); in this
case it’s simply f(¢). Since at each value of 1, f?(1) is positive,
Ci(0) will be a comparatively large number. On the other
hand, when the noise is compared with itself shifted by an
amount +7,, Cy(7;) will be somewhat reduced. There will be
points in time where f(t)f(t + 7;) is positive and other points
where it will be negative, so that the value of the integral
drops off (Fig. 11.40b). In other words, by shifting the signal
with respect to itself, we have reduced the point-by-point sim-
ilarity that previously (7 = 0) occurred at any instant. As this
shift T increases, what little correlation existed quickly van-
ishes, as depicted in Fig. 11.40c. We can assume from the fact
that the autocorrelation and the power spectrum form a
Fourier transform pair [Eq. (11.83)] that the broader the fre-
quency bandwidth of the noise, the narrower the autocorrela-
tion. Thus for wide-bandwidth noise even a slight shift
markedly reduces any similarity between f(r) and f(r + 7).
Furthermore, if the signal comprises a random distribution of
rectangular pulses, we can see intuitively that the similarity
we spoke of earlier persists for a time commensurate with the
width of the pulses. The wider (in time) the pulses are, the
more slowly the correlation decreases as 7 increases. But this
is equivalent to saying that reducing the signal bandwidth
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Figure 11.40 A signal f(t) and its autocorrelation.

broadens Cy¢(7). All of this is in keeping with our previous
observation that the autocorrelation tosses out any phase
information, which in this case would correspond to the loca-
tions in time of the random pulses. Clearly, C,/(7) shouldn’t
be affected by the position of the pulses along ¢.

In very much the same way, the cross-correlation is a mea-
sure of the similarity between two different waveforms, f(z)
and h(z), as a function of the relative time shift 7. Unlike the
autocorrelation, there is now nothing special about 7 = 0.
Once again, for each value of 7 we average the product

Sf(t)h(t + 7) to get Cp,(7) via Eq. (11.87). For the functions

shown in Fig. 11.41, C,,(7) would have a positive peak
atT = 7.

Since the 1960s a great deal of effort has gone into the
development of optical processors that can rapidly analyze
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pictorial data. The potential uses range from comparing fin-
gerprints to scanning documents for words or phrases; from
screening aerial reconnaissance pictures to creating terrain-fol-
lowing guidance systems for missiles. An example of this kind
of optical pattern recognition, accomplished using correlation
techniques, is shown in Fig. 11.42. The input signal f(x, v)
depicted in photograph (a) is a broad view of some region that
is to be searched for a particular group of structures [photo-
graph (b)] isolated as the reference signal A(x, ¥). Of course,
that small frame is easy enough to scan directly by eye, so to
make things more realistic, imagine the input to be a few hun-
dred feet of reconnaissance film. The result of optically corre-
lating these two signals is displayed in photograph (c), where
we immediately see, from the correlation peak (i.e., the spike

Figure 11.41 The cross-correlation
of frt) and hrt).

of light), that indeed the desired group of structures is in the
input picture, and moreover its location is marked by the peak.

11.3.5 Transfer Functions

An Introduction to the Concepts

Until recent times, the traditional means of determining the
quality of an optical element or system of elements was to
evaluate its limit of resolution. The greater the resolution, the
better the system was presumed to be. In the spirit of this
approach. one might train an optical system on a resolution
target consisting, for instance, of a series of alternating light

Figure 11.42 An example of optical pattern recognition.
(@) Input signal, (b) reference data, (c) correlation pat-
tern. (Reprinted with permission from the November 1980 issue of
Electro-Optical Systems Design. David Casasent.)



and dark parallel rectangular bars. We have already seen that
an object point is imaged as a smear of light described by the
point-spread function &(Y, Z), as in Fig. 11.18. Under incoher-
ent illumination, these elementary flux-density patterns over-
lap and add linearly to create the final image. The
one-dimensional counterpart is the line-spread function S(Z),
which corresponds to the flux-density distribution across the
image of a geometrical line source having infinitesimal width
(Fig. 11.43). Because even an ideally perfect system is limited
by diffraction effects, the image of a resolution target (Fig.
11.44) will be somewhat blurred (see Fig. 11.20). Thus, as the
width of the bars on the target is made narrower, a limit will be
reached where the fine-line structure (akin to a Ronchi ruling)
will no longer be discernible—this then is the resolution limit
of the system. We can think of it as a spatial frequency cutoff
where each bright and dark bar pair constitutes one cycle on
the object (a common measure of which is line pairs per mm).

8(7)

Spread function

Figure 11.43 The line-spread function.
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Figure 11.44 A bar target resolution chart.

An obvious analogy which underscores the shortcomings of
this approach would be to evaluate a high-fidelity sound sys-
tem simply on the basis of its upper-frequency cutoff. The lim-
itations of this scheme became quite apparent with the
introduction of detectors such as the plumbicon, image
orthicon, and vidicon. These tubes have a relatively coarse
scanning raster, which fixes the resolution limit of the lens-
tube system at a fairly low spatial frequency. Accordingly, it
would seem reasonable to design the optics preceding such
detectors so that it provided the most contrast over this limited
frequency range. It would clearly be unnecessary and perhaps,
as we shall see, even detrimental to select a mating lens system
merely because of its own high limit of resolution. Evidently,
it would be more helpful to have some figure of merit applic-
able to the entire operating frequency range.

We have already represented the object as a collection of
point sources, each of which is imaged as a point-spread func-
tion by the optical system, and that patch of light is then con-
volved into the image. Now we approach the problem of
image analysis from a different, though related, perspective.
Consider the object 1o be the source of an input lightwave,
which itself is made up of plane waves. These travel off in spe-
cific directions corresponding, via Egs. (11.64) and (11.65), to
particular values of spatial frequency. How does the system
modify the amplitude and phase of each plane wave as it trans-
fers it from object to image?

A highly useful parameter in evaluating the performance of
a systern is the contrast or modulation, defined by

lmax B ]min

11.89
Imax + [min ( )

Modulation =
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As a simple example, suppose the input is a cosinusoidal irra-
diance distribution arising from an incoherently illuminated
transparency (Fig. 11.45). Here the output is also a cosine, but
one that’s somewhat altered. The modulation, which corre-
sponds to the amount the function varies about its mean value
divided by that mean value, is a measure of how readily the
fluctuations will be discernible against the dc background. For
the input the modulation is a maximum of 1.0, but the output
modulation is only 0.17. This is only the response of our hypo-
thetical system to essentially one spatial frequency input—it
would be nice to know what it does at all such frequencies.
Moreover, here the input modulation was 1.0, and the com-
parison with the output was easy. In general it will not be 1.0,
and so we define the ratio of the image modulation to the
object modulation at all spatial frequencies as the modulation
transfer function, or MTF.

Figure 11.46 is a plot of the MTF for two hypothetical lens-
es. Both start off with a zero-frequency (dc) value of 1.0, and
both cross the zero axis somewhere where they can no longer
resolve the data at that cutoff frequency. Had they both been
diffraction-limited lenses, that cutoff would have depended
only on diffraction and, hence, on the size of the aperture. In
any event, suppose one of these is to be coupled to a detector

10

(=]

I,

Figure 11.45 The irradiance into and out of a system.

1.0}

MTF

T
Detector cut-off
Spatial frequency (line pairs per mm)

Figure 11.46 Modulation versus spatial frequency for two lenses.

whose cutoff frequency is indicated in the diagram. Despite
the fact that lens-1 has a higher limit of resolution, lens-2
would certainly provide better performance when coupled to
the particular detector.

It should be pointed out that a square bar target provides an
input signal that is a series of square pulses, and the contrast in
image is actually a superposition of contrast variations due to
the constituent Fourier components. Indeed, one of the key
points in what is to follow is that optical elements functioning
as linear operators transform a sinusoidal input into an undis-
torted sinusoidal output. Despite this, the input and output
irradiance distributions as a rule will not be identical. For
example, the system’s magnification affects the spatial fre-
quency of the output (henceforth, the magnification will be
taken as one). Diffraction and aberrations reduce the sinu-
soid’s amplitude (contrast). Finally, asymmetrical aberrations
(e.g., coma) and poor centering of elements produce a shift in
the position of the output sinusoid corresponding to the intro-
duction of a phase shift. This latter point, which was consid-
ered in Fig. 11.12, can be appreciated using a diagram like that
of Fig. 11.47.

If the spread function is symmetrical, the image irradiance
will be an unshifted sinusoid, whereas an asymmetrical spread
function will apparently push the output over a bit, as in Fig.
11.48. In either case, regardless of the form of the spread func-
tion, the image is harmonic if the object is harmonic. Conse-
quently, if we envision an object as being composed of Fourier
components, the manner in which these individual harmonic
components are transformed by the optical system into the
corresponding harmonic constituents of the image is the quin-
tessential feature of the process. The function that performs



this service is known as the optical transfer function, or
OTF. It is a spatial frequency-dependent complex quantity
whose modulus is the modulation transfer function (MTF) and
whose phase, naturally enough, is the phase transfer function
(PTF). The former is a measure of the reduction in contrast
from object to image over the spectrum. The latter represents
the commensurate relative phase shift. Phase shifts in centered
optical systems occur only off-axis, and often the PTF is of

Object and idealized image
(unit magnification)
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Figure 11.47 Harmonic input and resulting output.
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Figure 11.48 Harmonic input and output with an asymmetric spread
function.

less interest than the MTF. Even so, each application of the
transfer function must be studied carefully; there are situations
wherein the PTF plays a crucial role. In point of fact, the MTF
has become a widely used means of specifying the perfor-
mance of all sorts of elements and systems, from lenses, mag-
netic tape, and films to telescopes, the atmosphere, and the
eye, to mention but a few. Moreover, it has the advantage that
if the MTFs for the individual independent components in a
system are known, the total MTF is often simply their product.
This is inapplicable to the cascading of lenses, since the aber-
rations in one lens can compensate for those of another lens in
tandem with it, and they are therefore not independent. Thus if
we photograph an object having a modulation of 0.3 at 30
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Figure 11.49 The relation-
ships between the object and
image spectra by way of the
OTF, and the object and
image irradiances by way of

Frequency spectrum of object Transfer function

cycles per mm, using a camera whose lens at the appropriate
setting has an MTF of 0.5 at 30 cycles/mm and a film* such
as Tri-X with an MTF of 0.4 at 30 cycles/mm, the image mod-
ulation will be 0.3 X 0.5 x 0.4 = 0.06.

A More Formal Discussion

We saw in Eq. (11.51) that the image (under the conditions of
space invariance and incoherence) could be expressed as the
convolution of the object irradiance and the point-spread func-
tion, in other words,

L(Y,Z}) = Iy(y,z) ® &(y,2) (11.90)
The corresponding statement in the spatial frequency domain
is obtained by a Fourier transform, namely,

HIY,Z)y = Flo(y,2)} F{s(v.2)} (11.91)

*Incidentally, the whole idea of treating film as a noise-free linear system
is somewhat suspect. For further reading see J. B. De Velis and G. B.
Parrent, Jr., “Transfer Function for Cascaded Optical Systems,” J. Opt.
Soc. Am. 57, 1486 (1967).

the point-spread function—alt

Frequency spectrum of image in incoherent illumination.

where use was made of the convolution theorem [Eq. (11.53)].
This says that the frequency spectrum of the image irradiance
distribution equals the product of the frequency spectrum of
the object irradiance distribution and the transform of the
spread function (Fig. 11.49). Thus, it is multiplication by
F{3(y, 7)} that produces the alteration in the frequency spec-
trum of the object, converting it into that of the image spec-
trum. In other words, it is F#{s( v, z)} that, in effect, transfers
the object spectrum into the image spectrum. This is just the
service performed by the OTF, and indeed we shall define the
unnormalized OTF as

T(Ky, kz) = F{3(y, 2} (11.92)
The modulus of J(ky, k) will effect a change in the ampli-
tudes of the various frequency components of the object spec-
trum, while its phase will, of course, appropriately alter the
phase of these components to yield F{/;(Y, Z)}. Bear in mind
that in the right-hand side of Eq. (11.90) the only quantity
dependent on the actual optical system is &(y, 2}, so it’s not
surprising that the spread function is the spatial counterpart of
the OTF.

Let’s now verify the statement made earlier that a harmon-
ic input transforms into a somewhat altered harmonic output,



To that end, suppose

In(z) =1+ acos(kzz + € (11.93)
where for simplicity’s sake, we’ll again use a one-dimension-
al distribution. The 1 is a dc bias, which makes sure the irradi-
ance doesn’t take on any unphysical negative values. Insofar
asf® h = h ® f, it will be more convenient here to use

1(Z) = 5(Z) ® lo(z)

and so

+ o0
1,(Z) = f {1 + acos [kz(Z — 2) + €]}8(z) dz
Expanding out the cosine, we obtain

+ oo

G
I(Z) = f S(z)dz + a cos (k;Z + e)f cos Kyz 8(z) dz

— —

+ oo

+ asin (kK Z + ¢€) f sin Kzz 8(z) dz

Referring back to Eq. (7.57), we recognize the second and
third integrals as the Fourier cosine and sine transforms of
§(z), respectively, that is to say, F{5(z)} and F,{5(z)}. Hence

Ii(z) = f S(z)dz + FA8(z)}a cos (k;Z + €)

+ F{S(z)}a sin (kzZ + € (11.94)

Recall that the complex transform we’ve become so used to
working with was defined such that

F ()} = FL} + iF{f(2)} (11.95)

or F(ky) = A(ky) + iB(ky) [11.7]

In addition,

F{f(z)} = | F(kz)|e?*® = | F(ky)|[cos ¢ + i sin @]

where |F(ky)| = [A%(kz) + B?(k,)]"/? (11.96)
. | B(ky)
and ¢(k) = tan —A(kz) (11.97)
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In precisely the same way, we apply this to the OTF, writing it
as

F(5(2)) = T(ky) = M(ky)e PR (11.98)
where M(k;) and ®(k;) are the unnormalized MTF and the
PTF, respectively. It is left as a problem to show that Eq.
(11.94) can be recast as

+ oo
I,(Z) = f 5(1) dz + a./‘/t(kz) CcOS [kzZ + £ — (D(kz)]
(11.99)

Notice that this is a function of the same form as the input sig-
nal [Eq. (11.93)], Io(z), which is just what we set out to deter-
mine. If the line-spread function is symmetrical (i.e., even),
FA5(2)} = 0, M(kz) = F{5(z}}, and (k) = 0; there is no
phase shift, as was pointed out in the previous section. For an
asymmetric (odd) spread function, #{&(z)} is nonzero, as is
the PTF.

It has now become customary practice to define a set of
normalized transfer functions by dividing J(kz) by its zero
spatial frequency value, that is, 5(0) =" $(z) dz. The nor-
malized spread function becomes

R 5(z
Su(z) = B ) (11.100)
J S(z) dz
while the normalized OTF is
F{ao(z)}
Tky) = "7 =Fs.(z)} (110D
f S(z) dz
or in two dimensions
T(ky, ky) = M(ky, ky)e'®Krke) (11.102)

where M(ky, k) = M(ky, kz)/ T(0, 0). Therefore I,(Z) in
Eq. (11.99) would then be proportional to

1 + aM(k;) cos [kzZ + € — D(k; )]

The image modulation [Eq. (11.89)) becomes aM(k;), the
object modulation [Eq. (11.93)] is a. and the ratio is, as
expected, the normalized MTF = M(k_).
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Figure 11.50 An example

This discussion is only an introductory one designed more
as a strong foundation than a complete structure. There are
many other insights to be explored, such as the relationship
between the autocorrelation of the pupil function and the OTF,
and from there, the means of computing and measuring trans-
fer functions (Fig. 11.50)-—but for this the reader is directed to
the literature.*

PROBLEMS

of the kind of lens design
information available via com-
puter techniques. (Photos cour-
tesy Optical Research Associates.)

*See the series of articles “The Evolution of the Transfer Function,” by
F. Abbott, beginning in March 1970 in Optical Spectra; the articles
"Physical Optics Notebook,” by G. B. Parrent, Jr., and B. J. Thompson,
beginning in December 1964, in the S.P...E. Journal, Vol. 3; or “Image
Structure and Transfer,” by K. Sayanagi, 1967, available from the
Institute of Optics, University of Rochester. A number of books are worth
consulting for practical emphasis, e.g., Modern Optics, by E. Brown;
Modern Optical Engineering, by W. Smith; and Applied Optics, by L. Levi.
In all of these, be careful of the sign convention in the transforms.

Complete solutions to all problems—except those with an asterisk—
can be found in the back of the book.

11.1 Determine the Fourier transform of the tunction
Eysink,x <L

E(x) =
W=10 N> L

Make a sketch of F{Erx)}. Discuss its relationship to Fig. 11.11.

11.2* Determine the Fourier transform of

sin® K, x |x] <L
9 =10 x|>L

Make a sketch of it.

11.3 Determine the Fourier transform of



cos” w,t [t|<T
fo = 0 lt|>T

Make a sketch of F(w), then sketch its limiting form as T — *oc.
11.4* Show that #{1} = 278(k).

11.5* Determine the Fourier transform of the function ffx) =
A coskyx.

11.6 Given that %{ f(x)} = F(k) and F{h(x)} = H(k), if a and b are
constants, determine ${af(x) + bh(x)}.

11.7* Figure P.11.7 shows two periodic functions, f(x) and h(x),
which are to be added to produce g(x). Sketch g(x); then draw dia-
grams of the real and imaginary frequency spectra, as well as the
amplitude spectra for each of the three functions.

Figure P.11.7 fx)

/N x

N
a\

\V/

h(x)

11.8 Compute the Fourier transform of the triangular pulse shown in
Fig. P.11.8. Make a sketch of your answer, labeling all the pertinent
values on the curve.

Figure P.11.8 fix)
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11.9* Given that #{f(x)} = F(k), introduce a constant scaling fac-
tor 1/a and determine the Fourier transform of f(x/a). Show that the
transform of f( —x) is F(—K).

11.10* Show that the Fourier transform of the transform, %{ f(x)},
equals 2mf(—x), and that this is not the inverse transform of the trans-
form, which equals f(x). This problem was suggested by Mr. D.
Chapman while a student at the University of Ottawa.

11.11° The rectangular function is often defined as

., l(x = x0)/al >
. —x0)/al =
s |(x - xO)/a‘ <

X — X

rect

02— O

1o [t [ — b | —

where it is set equal to % at the discontinuities (Fig. P.11.11). Deter-
mine the Fourier transform of

X = Xy

f(x) = rect

a

Notice that this is just a rectangular pulse, like that in Fig. 11.15,
shifted a distance xg from the origin.

Figure P.11.11 rect (%

11.12* With the last two problems in mind, show that
F{(1/2m)sinc (3x)} = rect(k), starting with the knowledge that
F{rect(x)} = sinc (%k), in other words, Eq. (7.58) with L = a, where
a=1.

11.13* Utilizing Eq. (11.38), show that &~ Y{F{f(x)}} = f(x).

11.14* Given F{f(x)}, show that F{f(x — x,)} differs from it only
by a linear phase factor,

11.15 Prove thatf ® h = h ® fdirectly. Now do it using the convo-
lution theorem.

11.16* Suppose we have two functions, f(x, y) and A(x, y), where
both have a value of 1 over a square region in the xy-plane and are
zero everywhere else (Fig. P.11.16). If g(X, Y) is their convolution,
make a plot of g(X, 0).
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Figure P.11.16 y

11.17 Referring to the previous problem, justify the fact that the
convolution is zero for |X| = d + ¢ when h is viewed as a spread
functio0O0n.

11.18* Use the method illustrated in Fig. 11.23 to convolve the two
functions depicted in Fig. P.11.18.

Figure P.11.18

11.19 Given that f(x)® h(x) = g(X), show that after shifting one of
the functions an amount xg, we get f(x — xo) ® h(x) = g(X — xp).

11.20* Prove analytically that the convolution of any function f(x)
with a delta function, &(x), generates the original function f(X). You
might make use of the fact that 6(x) is even.

11.21 Prove that 8(x — xy) ® f(x) =f(X — xp) and discuss the
meaning of this result. Make a sketch of two appropriate functions
and convolve them. Be sure to use an asymmetrical f{x).

11.22* Show that F{f(x) cos kox} = [F(k — kp) + F(k + k,)1/2
and that F{ f(x) sin Kox} = [F(k—K,) — F(k + ky)]/2i.

11.23* Figure P.11.23 shows two functions. Convolve them graph-
ically and draw a plot of the result.

11.24 Given the function

X —a

+ rect

f(x) = rect

x+a‘

determine its Fourier transform. (See Problem 11.11.)

11.25 Given the function f(x) = &6(x + 3) + 6(x — 2) + 8(x - 5),
convolve it with the arbitrary function A(x).

Figure P.11.23
Ftx) h(x)
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11.26* Make a sketch of the function arising from the convolution
of the two functions depicted in Fig. P.11.26.

Figure P.11.26 i i

B R . ,
1

Py .
11.27* Figure P.11.27 depicts a rect function (as defined above) and
a periodic comb function. Convolve the two to get g(x). Now sketch
the transform of each of these functions against spatial frequency
k/2a = 1/A. Check your results with the convolution theorem. Label
all the relevant points on the horizontal axes in terms of d—like the
zeros of the transform of f(x).

Figure P.11.27
Fx) h(x)

11.28 Figure P.11.28 shows, in one dimension, the electric field
across an illuminated aperture consisting of several opaque bars
forming a grating. Considering it to be created by taking the product
of a periodic rectangular wave h(x) and a unit rectangular function
f(x), sketch the resulting electric field in the Fraunhofer region.



Figure P.11.28

11.29 Show (for normally incident plane waves) that if an aperture
has a center of symmetry (i.e., if the aperture function is even), then
the diffracted field in the Fraunhofer case also possesses a center of
symmetry.

11.30 Suppose a given aperture produces a Fraunhofer field pattern
E(Y, Z). Show that if the aperture’s dimensions are altered such that
the aperture function goes from s(y, z) to d(ay, Bz), the newly dif-
fracted field will be given by

, I Y Z
EVY,Z)=—E[—»—
af3 a B
11.31 Show that when f(1) = A sin (w? + &), Cy(7) = (A2/2) cos wt,
which confirms the loss of phase information in the autocorrelation.

11.32 Suppose we have a single slit along the y-direction of width b
where the aperture function is constant across it at a value of .
What is the diffracted field if we now apodize the slit with a cosine
function amplitude mask? In other words, we cause the aperture func-
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tion to go from s at the center to 0 at *b/2 via a cosinusoidal
dropoff.

11.33* Show. from the integral definitions, that f(x)(Og(x) =
Ax)@g(—x).

11.34* Figure P.11.34 shows a transparent ring on an otherwise
opagque mask. Make a rough sketch of its autocorrelation function,
taking / to be the center-to-center separation against which you plot
that function.

Figure P.11.34

11.35* Consider the function in Fig. 11.35 as a cosine carrier multi-
plied by an exponential envelope. Use the frequency convolution the-
orem to evaluate its Fourier transform.



